
Neural 3D Strokes: Creating Stylized 3D Scenes with Vectorized 3D Strokes

Supplementary Material

This supplementary document provides additional de-
tails of the 3D strokes in Sec. 6, implementations in Sec.7,
additional comparisons of various 3D strokes in Sec. 8, and
application training setups in Sec. 9. Please also watch our
accompanying video for an animated visualization of styl-
ization results.

6. Details of 3D Strokes
6.1. Transformation of Basic Primitives

In Sec. 3.2.1 of the main paper, we use a transformation ma-
trix to map the coordinates in the shared scene space into the
canonical space of each unit signed distance field. Here we
provide the construction details of the transformation ma-
trix. Given a translation vector t = (tx, ty, tz), an Euler
angle rotation vector r = (rx, ry, rz), and a scale vector
s = (sx, sy, sz), we first construct the matrices for each
term respectively, then combine them in the order of scale,
rotation, and translation to get the final transformation ma-
trix M :

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 ,

Rx =


1 0 0 0
0 cos rx − sin rx 0
0 sin rx cos rx 0
0 0 0 1

 ,

Ry =


cos ry 0 sin ry 0
0 1 0 0

− sin ry 0 cos ry 0
0 0 0 1

 ,

Rz =


cos rz − sin rz 0 0
sin rz cos rz 0 0
0 0 1 0
0 0 0 1

 ,

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 ,

M = TRzRyRxS

(15)

In cases where composited primitives do not utilize the
full set of transformation components—translation, rota-
tion, and scale—we omit the respective term in the M for-
mula. For uniform scaling, represented by a scalar scaling
factor s, we set sx, sy , and sz all equal to s.

6.2. Complete List of 3D Strokes

Utilizing various combinations of basic geometric shapes
in unit space, along with transformations including trans-
lation, rotation, and scale, enables the creation of a diverse
palette of 3D strokes. These strokes exhibit distinct geomet-
ric and aesthetic stylization. The full assortment of these 3D
strokes is detailed in Tab. 3.

6.3. Spline Curves

6.3.1 Polynomial splines

In Sec. 3.2.2 of the main paper, we use three types of differ-
ent polynomial curves that are commonly used in computer
graphics. Specifically, we use the quadratic Bézier, cubic
Bézier, and Catmull Rom spline, respectively. We provide
the concrete definition of these curves below. All points de-
fined here are vectors in the 3D scene space.

Quadratic Bézier Spline. A quadratic Bézier spline is
defined by three control points, the start point P0, the end
point P2, and middle point P1 that is also tangent to the P0

and P2. Note that the curve only blends toward but does
not pass the middle point P1. The parametric form is given
by:

C(t;P0,P1,P2) = (1−t)2P0+2(1−t)tP1+t2P2 (16)

Cubic Bézier Spline. A cubic Bézier spline introduces an
additional control point compared with the quadratic spline.
This spline is defined by four points: the start point P0, two
control points P1 and P2, and the end point P3. The curve
starts at P0 and ends at P3, with P1 and P2 influencing its
shape. The parametric equation of a cubic Bézier spline is:

C(t;P0,P1,P2,P3) = (1− t)3P0 + 3(1− t)2tP1

+ 3(1− t)t2P2 + t3P3

(17)

Catmull Rom Spline. The Catmull Rom spline is another
form of cubic spline, notable for its ability to interpolate its
control points. This spline is defined by a series of points,
with the curve passing through each of these points except
the first and last. One feature of the Catmull Rom spline
is that the tangent at each point is determined by the line
connecting the previous and next points, ensuring a smooth
transition. In our implementation, we specifically use the
centripetal Catmull-Rom spline, a variant of the standard
Catmull-Rom spline. This type of spline is particularly ad-
vantageous for avoiding the issue of self-intersecting loops

1



Stroke Name Base SDF Translation Rotation Uniform Scale Anisotropic Scale

Sphere Unit Sphere ✓ ✗ ✓ ✗
Ellipsoid Unit Sphere ✓ ✓ ✗ ✓
Axis-aligned Cube Unit Cube ✓ ✗ ✓ ✗
Oriented Cube Unit Cube ✓ ✓ ✓ ✗
Axis-aligned Box Unit Cube ✓ ✗ ✗ ✓
Oriented Box Unit Cube ✓ ✓ ✗ ✓
Round Cube Unit RoundCube ✓ ✓ ✓ ✗
Round Box Unit RoundCube ✓ ✓ ✗ ✓
Line Unit Line ✓ ✓ ✓ ✗
Triprism Unit Triprism ✓ ✓ ✓ ✗
Octahedron Unit Octahedron ✓ ✓ ✓ ✗
Tetrahedron Unit Tetrahedron ✓ ✓ ✓ ✗

Table 3. The basic shapes and transformations used in all 3D strokes.

in the curve, which are common in the uniform and chordal
Catmull-Rom splines. The parametric form of the Catmull
Rom spline, for a segment between P1 and P2, with P0

and P3 influencing the shape, is defined as:

C(t;P0,P1,P2,P3) =
1

2
[(2P1)

+ (−P0 +P2)t

+ (2P0 − 5P1 + 4P2 −P3)t
2

+ (−P0 + 3P1 − 3P2 +P3)t
3]

(18)

6.3.2 Nearest Point Finding

As mentioned in Sec. 3.2.2 of the main paper, we need to
locate the nearest point on the spline in order to compute the
SDF of the spline curve. This involves solving the following
equation that finds the t value with the minimized distance
to the query point p ∈ R3 in a differential way:

t∗ = argmin
t
∥C(t, θcurve

s )− p∥2, s.t. 0 ≤ t ≤ 1 , (19)

where θcurve
s denotes the parameters of the spline curve. An

analytical solution might exist for some specific formula-
tions of the splines. However, for more versatility, we use
a general approximation solution that can be adapted to any
parametric spline curve in the main paper. K + 1 samples
are uniformly selected on the curve to form K line seg-
ments, and the distance of each line segment to the query
point is calculated to find t∗. Assuming the line segment is
given as L(t;A,B) = (1 − t)A + tB, t ∈ [0, 1], where
A and B are the two endpoints of the line segment, the dis-
tance from point p to this line segment L can be calculated
as:

dL(p,A,B) = ∥p− L(t′;A,B)∥2 (20)

where t′ is the t value that gives the nearest point on the line
segment:

t′(p,A,B) = min(max(
(p−A) · (B−A)

(B−A) · (B−A)
, 0), 1)

(21)
We then compute t∗ using Algorithm 1. The computation
complexity can be easily controlled by adjusting the number
of K, where a higher K leads to a more accurate approxi-
mation but at the cost of higher computation.

Algorithm 1: Find the approximated nearest point
on a given spline curve by uniformly sample K line
segments on the curve.

Input: C: parametric spline function defining the
coordinates at distance t ∈ [0, 1].
θcurves : parameters of the spline curve.
K: number of line segments used.
p: coordinate of the query point.

Result: t∗: the t value of the nearest point on the
spline curve.

t∗ ← 0;
tstart ← 0;
dmin ←∞;
A← C(tstart, θ

curve
s );

for i← 1 to K do
tend ← i/K;
B← C(tend, θ

curve
s );

if dL(p,A,B) < dmin then
dmin = dL(p,A,B);
t∗ = tstart + (tend − tstart) · t′(p,A,B);

end
tstart ← tend;
A← B;

end

2



7. Implementation Details

We implement the stroke field using Pytorch [23] frame-
work and implement the strokes using fused CUDA kernels
to accelerate training and reduce GPU memory usage. We
transform sampled coordinates to the canonical volume ac-
cording to the scene bounding box and use the normalized
scene coordinates as inputs to the stroke field. Like Zip-
NeRF [2], we use a proposal network based on hash grid
representation [20] to facilitate ray sampling. Specifically,
for each ray of a pixel, we first sample 32 points using the
proposal MLP to obtain sampling weights. We resample 32
points and compute the stroke field’s density and color on
each point, and use the same volumetric rendering formula
in NeRF to acquire the final pixel color.

We train 15k steps using 500 strokes for scenes with a
single object, and train 25k steps using 1000 strokes for
face-forwarding scenes. We employ the AdamW [17] opti-
mizer with betas (0.9, 0.99), setting the learning rate to 0.01
and exponentially decays to 0.0003. We start with kδ = 7
and gradually decay it to kδ = 1 during training. Addi-
tionally, as brushes are progressively added to the scene,
we start with 25% of the sampling points and gradually use
all the sampling points when training reaches 80%. We set
λcolor = 1, λmask = 0.02, λden reg = 0.0001, λerr = 0.1,
and λerr reg = 0.001 in our training setup.

8. Quantitative comparison of strokes

In Sec. 4.1 of the main paper, we conduct a qualitative com-
parison between the visual effects of several selected 3D
strokes. Additionally, this section includes a comprehen-
sive quantitative analysis of all 3D strokes, as detailed in
Tab. 4. The metrics are measured using 500 strokes on ob-
ject scenes and 1000 strokes on face-forwarding scenes. As
shown in the table, the ellipsoid stroke typically demon-
strates superior fidelity in scene reconstruction, followed
closely by the cubic Bézier curve.

9. Training setup of applications

9.1. Color Transfer

In Sec. 4.4 of the main paper, we transfer the color distribu-
tion from a reference style image to a trained stroke-based
3D scene. We adopt perceptual style loss, which extracts the
gram matrix [8] at specific layers of a pre-trained VGG16
network [13], and computer the difference between the ren-
dered RGB image and the target style image. Since comput-
ing style loss requires an image rather than individual pixels
as input, we randomly render 32x32 chunks of original im-
ages under the given camera poses. We add this style loss
with a weight λstyle = 0.25 to the total loss and fine-tune
the color parameters of trained strokes for 5k iterations.

Table 4. Averaged quantitative metrics of reconstruction results of
different 3D strokes.

PSNR↑ SSIM↑ LPIPS↓
Sphere 19.72 0.591 0.416
Ellipsoid 21.78 0.687 0.283
Cube 19.65 0.593 0.389
Axis-aligned Box 19.99 0.588 0.408
Oriented Box 20.66 0.637 0.321
Round Cube 20.17 0.623 0.380
Tetrahedron 20.30 0.625 0.372
Octahedron 20.09 0.614 0.380
Triprism 20.68 0.640 0.351
Line 20.74 0.641 0.347

Quadratic Bézier 21.32 0.676 0.311
Cubic Bézier 21.64 0.687 0.308
Catmull-Rom 21.47 0.675 0.324

9.2. Text-driven scene drawing

In Sec. 4.4 of the main paper, we use the vision-language
model CLIP [24] (ViT-B/32) to achieve scene drawing
based on a given text prompt. Specifically, we minimize the
loss between the text embedding of the given prompt and
the image embedding of the rendered RGB image. When
rendering the images, we sample camera poses in a circu-
lar path looking at the scene’s origin with azimuth angle
in [0, 360] and elevation angle in [40, 105], and render an
image chunk of size 128 × 128. We consider the azimuth
angle starting at zero as the front view and adjust the CLIP
guidance scale for larger azimuth angles accordingly. This
adjustment results in generation outcomes that are more co-
herent with the viewpoint.

For text guidance, we use the template “realistic
3D rendering painting of [OBJECT]”, where
[OBJECT] is substituted with the specific object descrip-
tion we aim to generate. Additionally, we discovered that
incorporating a silhouette loss alongside the RGB loss sig-
nificantly enhances the quality of the generated geometric
shapes. This is achieved by generating another image em-
bedding from the rendered opacity and encouraging lower
loss between this silhouette image embedding with the text
embedding.

3


	. Introduction
	. Related Work
	. Image Painting
	. Stylization of 3D Scenes

	. Methodology
	. Overview of Stroke Field
	. 3D Strokes
	Basic Primitives
	Spline Curves

	. Differentiable Rendering of 3D Strokes
	. Composition of 3D Strokes
	. Training Strategy

	. Experiments
	. Stroke-based scene reconstruction
	. Comparison with other methods
	. Ablation studies
	. Applications

	. Discussion
	. Details of 3D Strokes
	. Transformation of Basic Primitives
	. Complete List of 3D Strokes
	. Spline Curves
	Polynomial splines
	Nearest Point Finding


	. Implementation Details
	. Quantitative comparison of strokes
	. Training setup of applications
	. Color Transfer
	. Text-driven scene drawing




