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1. CAD architecture
In this section, we describe the building blocks of the pro-
posed CAD architecture.

1.1. RIN architecture for class conditional CAD

We first explain our adaptation of the RIN architecture [3],
that we use in our experiments on class conditional genera-
tion in the context of coherence aware diffusion. As shown
in Figure 1, the RIN block is composed of two branches:
one with the latents and one with the patches. We concate-
nate the timestep, coherence and conditioning embeddings
to the latents (olive, green and orange blocks), with the
coherence embedding being an addition of our method to
the original RIN architecture. Then, first, the latents gather
information from the input patches via Cross-Attention. Sec-
ond, the latents are processed with N self-attention layers.
Finally, the patches are updated from the latents via Cross-
Attention. The RIN architecture consists of stacking multiple

Figure 1. Architecture of the RIN Block modified to receive as
input the coherence.

RIN blocks, where the next RIN block receives the updated
latents and patches.

During inference, RIN takes as input a noisy version of
the image, a class, a timestep, and a coherence token to
predict the noise that has been added to the clean version of
the image. To improve the sampling, output latents from a
given step are forwarded as input to the next denoising step.
For more details, see [3].

1.2. CAD with text conditioning

To enable text-conditioned image generation, we propose
a modification to the RIN architecture, coined Text RIN
Block (see Figure 2). First, the text tokens are mapped with
the coherence with 2x self-attention layers initialized with
LayerScale [7] (top part in the figure) and 16 registers [2].
This mapping is the same for every Text RIN block. Note
that unlike the class conditional RIN block (Figure 1), in
our proposed Text RIN Block, the latent branch contains
only the latents; there are no concatenated tokens anymore.
Instead, the mapped text tokens, coherence, and timestep
embeddings provide information to the latent branch with a
cross-attention layer at the beginning of the Text RIN block.
Then, the rest of the architecture is the same as the RIN
block.

Similarly, during inference our architecture takes as input
a noisy version of the image, the timestep and coherence
tokens, and a text conditioning that is mapped with a frozen
FLAN T5 XL encoder. It then predicts the noise that has
been added to the clean image. Output latents from one
denoising step are also forwarded to the next denoising step.
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2. Implementation details
In this section, we present the implementation details for
each experiment as well as the training setup.

2.1. Text Conditining

For the text conditional, we use the LAMB optimizer [8]
with a weight decay of 0.01. We use a learning rate of 0.001.
The batch size is 1024. We use a linear warmup of the
learning rate for the first 10k steps and then use a cosine
decay. We train all models for 300k steps. We use an EMA
decay of 0.9999 for the last 50k steps.
We use the Stable diffusion VAE encoder [6] and perform
the diffusion process in its embedding space in which the
image tokens have dimension 32x32x4. We have 4 RIN
blocks, each having 4 self-attention units. The data tokens
dimension is 256 and the latent token dimension is 768. The
input data is reduced to 256 data tokens by using a patch-size
of 2.

2.2. Class Conditioning

For the class conditional experiments, we follow the hyper-
parameters provided by the authors of RIN. We use the
LAMB optimizer with weight decay of 0.01. We use a linear
warmup of the learning rate for the first 10k steps and then
use a cosine decay. We train all models for 150k steps. We
use an EMA decay of 0.9999.
For CIFAR-10, we have 3 RIN blocks, each having 2 pro-
cessing units. The data tokens dimension is 256 and the
latent token dimension is 512. We use a patch-size of 2. We
use a learning rate of 0.003. The batch-size is 256.
For ImageNet-64, we have 4 RIN blocks, each having 4
processing units. The data tokens dimension is 512 and the
latent token dimension is 768. We use a patch-size of 8. We
use a learning rate of 0.002. The batch-size is 1024.

2.3. Semantic map conditioning

Generations conditioned on semantic maps were obtained
by training a ControlNet [9]. To train the ControlNet, we
created a dataset of images selected from the ADE20K [10]

Figure 2. Architecture of the proposed Text RIN Block used in
CAD.

and MS COCO [5] datasets. This dataset contains tuples
of the form (image, caption, semantic map, coherence map)
that were generated from the original images. The captions
are obtained with BLIP2 [4], an image captioning language
model. We utilize a Maskformer [1] trained either on the
MS COCO dataset or ADE20k to generate the semantic
maps. To extract coherence values, we use the maximum
class probability obtained from the softmax output of the
Maskformer model. We employ a MaskFormer trained on
ADE20K to generate the coherence map for MS COCO,
and conversely, use a MaskFormer trained on MS COCO
to obtain the coherence map for ADE20K. This approach
helps mitigate the problem of overconfidence in predictions
on the training set, reducing the tendency to have only high
coherence scores across all pixels. We used a batch size of
16, using the Adam optimizer with a learning rate of 1e-5.

2.4. Computational cost

Our method adds negligible training and inference time be-
cause we either modify existing architectures or add non-
computationally expensive components. Specifically, in
terms of architecture, we are replacing one of the latent
tokens with an embedded coherence score. For the text-
conditional, we do add a new cross-attention layer, but most
of the compute is still in the self-attention blocks.

In this project, we have used approximately 25,553 V100
hours for preliminary experiments including the CIFAR-
10 experiments and 29,489 A100 hours for ImageNet and
text-conditional experiments. Each GPU hour accounts for
roughly 259 Wh for a total of 14,255kWh. For semantic
segmentation, the training of the different ControlNets was
performed using about 1,800 hours of Nvidia A100 GPUs
in total, or about 470kWh. The training process required
approximately 100 GPU hours for each model trained on
ADE20k [10] and 200 GPU hours for MS COCO [5].

3. Image from semantic map additional experi-
ments

In this section, we examine the effectiveness of incorporating
coherence maps for semantic segmentation. We qualitatively
and quantitatively compare the results of our CAD method
against a baseline approach not using the coherence informa-
tion.

3.1. Quantitative results

Here, we quantitatively evaluate the effectiveness of incor-
porating coherence maps for semantic segmentation. For
this, we experiment on two of the most popular datasets
with segmentation: ADE20K [10] and MS COCO [5]. To
evaluate our results, we employ the Frechet Inception Dis-
tance (FID) and Inception Score (IS) for evaluating image
quality. Additionally, Precision (P), Recall (R), Density (D),



Table 1. Quantitative results on ADE20K when conditioning on
semantic maps. ‘CAD bin’ encodes the coherence into 5 equally
distributed discrete bins. ‘CAD scalar’ uses a scalar coherence
score for the whole image. CAD achieves better FID due to its
enhanced ability to generate realistic objects in low coherence re-
gions and superior mIoU as the leaked spatial information from the
coherence map and the caption assist it to generate better samples
(see Section 3.1 for more details).

ADE20K
ControlNet FID IS mIoU P R D C

Baseline 33.67 14.82 22.6 0.785 0.757 1.029 0.904
CAD 30.88 14.79 23.7 0.844 0.824 1.0755 0.934

Baseline w/o text 74.37 5.88 5.25 0.657 0.351 0.789 0.515
CAD w/o text 60.21 7.93 11.8 0.619 0.536 0.789 0.682

CAD bin 63.47 7.97 10.8 0.5875 0.4925 0.757 0.663
CAD scalar 74.69 6.15 3.11 0.6495 0.347 0.858 0.536

Table 2. Quantitative results on MS COCO when condition-
ing on semantic maps. ‘CAD bin’ encodes the coherence into 5
equally distributed discrete bins. ‘CAD scalar’ uses a scalar coher-
ence score for the whole image (see Section 3.1 for more details).

COCO
ControlNet FID IS mIoU P R D C

Baseline 20.1 32.6 35.1 0.7876 0.6760 1.0811 0.8956
CAD 18.1 32.0 35.3 0.8404 0.8060 1.0687 0.9304

Baseline w/o text 54.93 15.40 8.36 0.4884 0.4402 0.5297 0.5260
CAD w/o text 37.06 18.04 12.53 0.6222 0.6502 0.7599 0.7052

CAD bin 44.63 16.39 9.76 0.5636 0.5614 0.7075 0.6402
CAD scalar 55.82 15.92 8.10 0.5139 0.4382 0.5294 0.5341

and Coverage (C) serve as manifold metrics, enabling an
evaluation of the overlap between the generated and real im-
age manifolds. Finally, we calculate the mean Intersection
over Union (mIoU) by utilizing a pre-trained MaskFormer
to predict a segmentation map from the generated image
and compare it with the original semantic map. This helps
illustrate the fidelity of the generated images to the ground
truth.

Method comparison. We compare the results of our CAD
method with a baseline approach that excludes coherence
information in both Table 1 and Table 2, with the complete
results. We conduct experiments in two settings: with text
(first two rows) and without text (last four rows). Addition-
ally, we compare against two CAD variations. Similar to
the binning strategy in text-to-image generation, ‘CAD bin’
encodes coherence into 5 equally distributed discrete bins.
Furthermore, ‘CAD scalar’ utilizes a singular scalar coher-
ence score for the entire image, equivalent to the mean of
the original coherence map.

Results. In Table 1 and Table 2, show the complete results
of our method on ADE20k and COCO we demonstrate that
using both the segmentation maps and the coherence maps

lead to a decrease in FID for both scenarios, including or not
the text input. This behavior is expected as our model pos-
sesses greater freedom to generate realistic content instead
of sticking to the segmentation map uniquely (see e.g., the
4th column of Figure 3). Furthermore, the improvement in
the mIoU score can be attributed to two factors. First, when
the input segmentation map is of low quality, the baseline
method fails to capture important scene information. In con-
trast, our method benefits from additional information from
the coherence map. Secondly, our method better leverages
the caption in the low coherence region, mitigating the limi-
tation of the segmentation map’s limited number of classes
(as seen in 4th row in Figure 4, there is no ping-pong table
class in the COCO dataset).

3.2. Additional Visualizations

We show additional results in Figure 3, where, from the left
column to the right one, we highlight the segmentation input,
the coherence map, the image generated by the baseline, the
image generated by our methods and the reference image.
The coherence map reveals spatial/shape details of the scene.
For instance, when comparing our method to a ControlNet
trained solely with the segmentation map, our approach,
which incorporates both segmentation and coherence, accu-
rately reconstructs the curtain’s shape and the windows in
the first row, or reconstructs a cloud in the back of the plane
in the second row. Moreover, the efficacy of our method
becomes even more apparent when the segmentation map is
of poor quality and the coherence score is low. For instance,
as shown in the third row, the basic ControlNet attempts to
adhere to the limited information provided by the flawed
segmentation map, resulting in a scene with multiple arms
displayed (third column). In contrast, our approach benefits
from the flexibility given by the coherence map, allowing for
more consistent image generation. Interestingly, our method
also exhibits localized self-correction, as shown on the fourth
row. In particular, our model is refraining from generating
the hand region due to its low coherence in the input. Fi-
nally, we demonstrate the model’s responsiveness to textual
input in the last row. We present in the last row an example
where the original image does not contain snow, but have
high coherence in the sky. Both models generate some snow
based on the caption, but in line with the coherence map, our
model does not generate snow in the sky, thus being closer
to the real image.

3.3. Prompt generalization

In this subsection, we demonstrate the sensitivity of our
method to the caption input. We observe in Figure 4 that our
CAD method can successfully generalize to different types
of captions, such as ‘dining table’, ‘billiard’, or ‘ping pong
table’ and adjust the scene accordingly. Moreover, even
when the table is not explicitly mentioned in the caption (as



Caption: An hotel room with a bed, chair and table:

Caption: A white airplane on the runway:

Caption: A man sitting in front of a slot machine:

Caption: A large room with ping-pong tables and people playing:

Caption: A drilling rig in the middle of a snowy field:

Segmentation Coherence Baseline Ours Real Image

Figure 3. Qualitative results on ADE20K: Examples of images generated conditionally to text and semantic maps.



seen on the rightmost side of the figure), our method exhibits
strong generalization capabilities and successfully generates
the table.

3.4. Coherence Interpolation

In Figure 5, we demonstrate the significance of the coher-
ence map in the conditioning of the ControlNet. In this
experiment, we make an interpolation of the coherence map
from the maximum coherence score everywhere (left) to very
low coherence (right). When the input has high coherence
throughout, the generated image lacks the presence of a ping
pong table as it is not present in the semantic map. However,
as the coherence score decreases, our methods recognize the
shape of the ping pong table and successfully generates it in
the image. It is worth noting that even at a low scale of the
coherence score (second column corresponds to 1e-4 times
the original value), our method is still able to reconstruct the
table, even if it is not in the segmentation input. When we
artificially reduce the coherence (two times less coherence,
in the last column), our method is still able to generate a
consistent scene without any artifacts.

4. Class conditional experiments

4.1. Simulating annotation noise

Our approach for class-conditional image generation relies
on the assumption that the dataset comes with annotated
coherence scores. However, such scores are not always avail-
able for traditional image-generation datasets. To address
this issue, we propose to simulate annotation noise by re-
sampling from a dataset with clean annotations.

We associate an error probability α with each label. We
assume that when the annotator is wrong, they misclassify
uniformly over all classes, where N is the total number of
classes. This leads to the following model:

ȳ ∼ py,α with py,α(Ȳ = k) =

{
1− α if y = k,

α
N−1 otherwise.

(1)

We also define a strategy to remap the entire dataset using a
normalized entropy-based coherence measure. We use the
normalized entropy so that 0 maps to no coherence at all and
1 to total coherence in the label. We define the following
coherence function:

E(α) =
−1

log(N)

(
(1− α) log(1− α) + α log

(
α

N − 1

))
for α ∈

[
0,

N − 1

N

]
. (2)

To ensure that the dataset has samples with varying levels
of confidence, we define a target entropy cumulative distri-

bution. To achieve this, we use a piecewise-linear function:

Eβ,th(t) =

{
tβκ if t < κ,

1 + (t− 1) 1−β
1−κ otherwise.

(3)

where κ represents a threshold and β represents the entropy
at this threshold. This function construction defines a low
entropy region before the threshold and a high entropy region
after the threshold.
Finally, for each sample in the dataset (X, y), we sample t ∈
U [0, 1], and associate a target entropy u. We then compute
the associated error probability α = E−1(u), and resample
according to py,α to obtain the tuple (X, ȳ, 1 − u)1. This
process allows us to generate synthetic data points with
varying degrees of annotation noise and coherence.

4.2. Quantitative Results

In this section we add more results on ImageNet with dif-
ferent levels of noise. We observe in Table 3 results on
ImageNet for β ∈ {0.2, 0.5, 0.8}. We first observe the less
coherent the labels are the worse the results get in both im-
age quality (FID) but also in accuracy (Acc). However, our
method CAD manages to achieve better results than other
methods in the context of un-coherent labels. This is further
amplified when leveraging coherence aware guidance

Table 3. Quantitative results for class-conditional image generation.
Our coherence aware diffusion (CAD) is compared to a baseline
model and a training set filtering strategy for different levels of
label noise β. We show that CAD achieves higher fidelity and
better accuracy.

ImageNet

β Method FID IS Acc P R D C

Conditional 7.56 34.26 0.475 0.595 0.610 0.768 0.706

0.2

Baseline 11.09 23.54 0.264 0.562 0.598 0.670 0.594

Filtered 8.53 29.27 0.389 0.591 0.609 0.756 0.688

CAD 8.17 27.75 0.367 0.585 0.615 0.736 0.658

CA-CFG ω = 1 5.95 68.95 0.679 0.742 0.477 1.203 0.812

0.5

Baseline 14.38 20.46 0.168 0.539 0.579 0.595 0.505

Filtered 10.20 26.59 0.338 0.573 0.608 0.707 0.645

CAD 9.11 25.97 0.327 0.571 0.610 0.714 0.633

CA-CFG ω = 1 5.95 68.95 0.679 0.742 0.477 1.203 0.812

0.8

Baseline 20.10 17.28 0.100 0.502 0.535 0.526 0.417

Filtered 12.00 24.55 0.292 0.420 0.712 0.647 0.605

CAD 11.39 22.08 0.248 0.558 0.590 0.682 0.574

CA-CFG ω = 1 6.70 44.27 0.523 0.695 0.483 1.035 0.743

5. Theoretical analysis
In this section, we motivate the use of coherence as an addi-
tional conditioning for diffusion models. Under assumptions

1The coherence goes in the opposite direction of the entropy.



Figure 4. Caption generalization: Our methods demonstrate remarkable capability in leveraging the coherence map to generalize to diverse
prompt inputs.

High coherence                                                                                                                                                                                              Low coherence

Figure 5. Coherence interpolation: In the first column, we artificially provide our ControlNet with a coherence map having the maximum
value everywhere. Indeed, our models do not generate the ping pong tables. But, as soon as we decrease the coherence toward its original
value, the ping pong tables start to appear. Finally, in the last column, we provide the model with a coherence map that is half as confident as
the original value and demonstrate that we can generate an image without artifacts

that are verified empirically, we show that coherence aware
diffusion can transition from an unconditional model to a
conditional model simply by varying the coherence passed
to the model. First, we define a consistency property of the
coherence embedding as follows:

Definition 5.1. We denote coherence consistent a condi-
tional embedding h(y, c) of the condition y ∈ Y under
coherence c ∈ [0, 1], if ∀y1, y2 ∈ Y we have

lim
c→0

∥h(y1, c)− h(y2, c)∥ = 0 . (4)

In other words, an embedding is coherence consistent

if it tends to produce the same vector as the coherence ap-
proaches 0. This property is a sufficient condition to con-
strain the behavior of the diffusion model. Indeed, the fol-
lowing proposition is easily derived from it:

Proposition 5.1. Lipschitz continuous conditional neural
diffusion models that leverage coherence consistent embed-
dings for the conditioning are equivalent to unconditional
models at low coherence.

Proof. We have to prove the following equivalent statement:
Let ϵθ : xt, t, h(y, c) 7→ ϵ̂t be a Lipschitz continuous neu-
ral diffusion model that predicts the noise ϵ̂t at time t from



the noisy sample xt with the help of the condition y em-
bedded using the coherence consistent embedding h under
coherence c. Then, ∀η > 0 and ∀xt, t, y1 ̸= y2, there exists
C > 0 such that for all 0 < c ≤ C, we have

∥ϵθ(xt, t, h(y1, c))− ϵθ(xt, t, h(y2, c))∥2 < η . (5)

By Lipschitz property of ϵθ, we have
∥ϵθ(xt, t, h(y1, c)) − ϵθ(xt, t, h(y2, c))∥2 ≤
L2∥h(y1, c) − h(y2, c)∥2. From the coherence con-
sistent property, there exists C > 0 such that for all
0 < c ≤ C, ∥h(y1, c)− h(y2, c)∥ <

√
η/L.

The following contrapositive necessary condition on the
coherence directly follows from this proposition:

Corollary 5.2. Lipschitz continuous conditional neural dif-
fusion models that leverage coherence aware embeddings
require high coherence to behave like conditional models.

In practice, we show in the experiments that the coher-
ence consistency property tends to naturally emerge during
training and that consequently coherence aware diffusion
provides a tunable prompt parameter to sample from uncon-
ditional to conditional models.

6. Additional Qualitative Results
In this section, we provide additional samples from our
method. Most of the prompts are sampled from the Lex-
ica.art website.
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Figure 6. Samples from our CAD model at 512 resolution with associated caption

An old-world galleon navigating through tur-
bulent ocean waves under a stormy sky lit by
flashes of lightning

an oil painting of rain at a traditional Chinese
town

portrait photo of a asia old warrior chief tribal
panther make up blue on red side profile look-
ing away serious eyes 50mm portrait photogra-
phy hard rim lighting photography

a blue jay stops on the top of a helmet of
Japanese samurai background with sakura tree

A cute little matte low poly isometric cherry
blossom forest island waterfalls lighting soft
shadows trending on Artstation 3d render mon-
ument valley fez video game.

Underwater cathedral

A cozy gingerbread house nestled in a dusting
of powdered sugar snow adorned with vibrant
candy canes and shimmering gumdrops

a teddy bear wearing blue ribbon taking selfie
in a small boat in the center of a lake

Pirate ship trapped in a cosmic maelstrom neb-
ula rendered in cosmic beach whirlpool engine
volumetric lighting spectacular ambient lights
light pollution cinematic atmosphere art nou-
veau style illustration art artwork by SenseiJaye
intricate detail.



Figure 7. Samples from our CAD model at 512 resolution



Figure 8. Samples from our CAD model at 512 resolution



Figure 9. Samples from our CAD model at 512 resolution



Figure 10. Samples from our CAD model at 512 resolution
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