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Figure 6. Spherical correlation coefficient of samples from
HuProSO3 (left) and from AMASS training dataset (right), ex-
cluding toe bases and root joints. Entries on the diagonal are set
to zero because their correlation coefficient ρ̂XY = 1 is always
equal to one. The coefficients are computed using 100k samples.

To complement the main paper, this supplementary material
delves into additional aspects not covered in detail previ-
ously. We include an analysis of the AMASS database, pro-
vide extended qualitative and quantitative evaluations, and
share details on the implementation and training.

A. Dataset Analysis

Given that both the development and assessment of our
method are grounded in a statistical analysis of the AMASS
database, we present the key findings and insights from this
analysis in this section.

A.1. Correlation Between Different Joints

Computing a correlation or dependence coefficient on
SO(3) is not straightforward. Hence, we use a unit quater-
nion representation of orientations and follow [9] to com-
pute a spherical correlation coefficient
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for the n samples Xi, Yi on the 3-sphere S3, on which all
quaternions reside. We visualize the spherical correlation
coefficients for all dynamic joints of the AMASS database
(excluding toe bases and the root orientation) in Fig. 6.
The illustration depicted in Appendix A.1 provides a bet-
ter intuition of these correlation coefficients, comparing the
correlation coefficients along the kinematic tree and for all
joints. Notably, high correlations are observed particularly
for joints at different leaves of the kinematic tree, such as
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Figure 7. Color-coded spherical correlation coefficients illustrated
along a skeleton model of the human body. For clarity, only the
coefficients with a value ρ̂XY > 0.03 are depicted.

for the left and right arm joints. We note that the used cor-
relation coefficient only captures certain dependencies on
the 3-sphere.

A.2. Distribution Gaps for the AMASS Datasets

Evaluating an unconditional prior typically assumes iid
samples in training and test datasets, which is not the case
for the AMASS [19] database. To compare the distribu-
tions of two datasets based on a sample-based similarity
metric of the rotations, we compute the earth mover’s dis-
tance (EMD) [28] using the geodesic distance as the dis-
tance measure. We compare the EMDs for individual joints
and for all joints for the common AMASS datasets split
[19] in Fig. 8 and the EMD between various datasets of the
AMASS database in Fig. 9. For computational reasons, we
use only 2k samples for the transport problem, acknowl-
edging potential inaccuracies in higher dimensions. Never-
theless, the distribution gap is highlighted because the en-
tries of the correlation matrix that correspond to the auto-
correlation are markedly lower than the cross-correlation.
This aligns with the notable performance disparity between
training and test datasets shown in the main paper (Tab. 1).

B. Implementation and Training Details

In the following, we elucidate the implementation and train-
ing details for HuProSO3 and the integration of the other
evaluated methods.

B.1. HuProSO3

We trained the following HuProSO3 models: one as an un-
conditional prior, one for inverse kinematics, one for inverse
kinematics with randomly occluded 3D key points, and one
for 2D to 3D uplifting.
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Figure 8. Earth mover’s distance between AMASS training (0),
validation (1), and test (2) datasets based on the geodesic distance
for all dynamic SMPL joints and when comparing All joints. For
the All category, the EMD is computed using the average geodesic
distance across multiple joint rotations.

Architecture. The normalizing flow architecture for
learning the density p(R) is consistent across all experi-
ments. We use 12 Möbius coupling layers, with each layer
(except the final one) followed by a quaternion affine trans-
formation, totaling 11 quaternion affine layers. The parame-
ters of the Möbius transformation are computed by an MLP
gc-M(·) with three hidden layers and ReLU activations and a
hidden dimension of 16. For the presented applications that
require conditioning (inverse kinematics and 2D to 3D up-
lifting), an MLP c = g(cfeat) computes the relevant features
from the input context vector cfeat. We use an MLP with
one hidden layer and a hidden dimension of 64. The output
dimension of the feature is c ∈ R64. The complete model
that is conditioned on the 3D pose has around 1.5 million
parameters.

Training. Our models are trained with a batch size of 1k,
utilizing the Adam optimizer. We set the initial learning
rate to 5e-3 and employ a step learning rate scheduler with
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Figure 9. Earth mover distances between various datasets in the
AMASS database, computed based on the sum of the geodesic
distances of all dynamic joints of the AMASS database.

a multiplicative factor of 0.5 for learning rate decay.

Run time. Sampling from an autoregressive model is
slow and scales with the number of dimensions. Paral-
lelizing the evaluation of the model is in general possible.
However, our current implementation does not support this.
Therefore, evaluating one batch requires around 1.1s on a
NVIDIA A40 GPU, while sampling one batch takes around
2.1s.

B.2. Learning and Optimizing Baseline Methods

We compare our method with implementations of
VPoser [25], GAN-S [4], Pose-NDF [34], and HuMan-
iFlow [32]. We use the pre-trained models for the pri-
ors VPoser, GAN-S, and Pose-NDF. The normalizing flow
based on the 6D representation is implemented using the
CircularAutoregressiveRationalQuadraticSpline module of
the normflows libary [33], with the PDF defined on x ∈
R6·19.

For conditional tasks, we optimize GAN-S and Pose-
NDF for inverse kinematics and 2D to 3D uplifting as out-
lined in the main paper in Sec. 4.2 based on 21 SMPL joints.
For GAN-S, we utilize the L-BFGS optimizer, set the learn-
ing rate to 1 and perform 500 iterations. We use the existing
Pose-NDF repository to optimize for occluded joints, and
we mask the joint positions in case of occlusions as outlined
in Eq. (11) in the main paper.

We train the extracted model of HuManiFlow [32] using
the Adam optimizer with a learning rate of 5e-5 with a step
learning rate scheduler and step factor of 0.5, and a batch
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Figure 10. Precision (P) and recall (R) curves for AMASS training
and test dataset based on the summed geodesic distances as pre-
sented in the main paper, computed for GAN-S, HuProSO3, and
6D normalizing flow. Higher values indicate better quality in all
charts.
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Figure 11. Precision (P) and recall (R) curves for the AMASS
training and test datasets based on the MPJPE metric, computed
for GAN-S, HuProSO3, and 6D normalizing flow. Higher values
indicate better quality in all charts.

size of 500 until convergence. We apply the same masking
strategy as for HuProSO3.

B.3. Visualization Techniques

In Fig. 5, we adopt the visualization technique introduced
by [20] to display samples on SO(3). A sample on SO(3) is
visualized by projecting it onto a 2-sphere and visualizing
the third rotation angle through color coding.

C. Additional Qualitative Results
C.1. Correlation Coefficients for Learned Prior

To demonstrate that our prior has effectively learned corre-
lations between different joint rotations, we plot the spher-
ical correlation coefficients computed on sampled poses
from the prior in figure Fig. 6 next to spherical correlation
coefficients computed from samples of the datasets.

Figure 12. Renderings of randomly sampled human poses from
the unconditional HuProSO3 prior.

Table 6. Summary of precision and recall statistics for the AMASS
database [19], both on test and training datasets. The values in-
dicate the MPJPEs [mm] for all SMPL joints between samples
from the dataset and the evaluated pose prior after applying for-
ward kinematics.

Test (mean [median]) Train (mean [median])

Recall Precision Recall Precision

GAN-S [4] 50.6 [48.4] 68.7 [64.2] 39.7 [35.0] 56.2 [49.7]
6D NF 46.3 [39.9] 65.8 [57.8] 39.4 [34.2] 57.2 [49.4]
Ours 45.4 [40.2] 61.2 [52.1] 34.3 [28.8] 51.3 [43.2]

C.2. Precision Recall Curves

To evaluate the priors, we compute the precision and recall
curves. We plot the curves in Fig. 10. To assess the pri-
ors, we compute and plot the precision and recall curves,
as shown in Fig. 10 and Fig. 11. This comparison, similar
to the one presented in Tab. 1 of the main paper, is based
on the MPJPE metric. Additionally, the mean and median
values of these metrics are detailed in Tab. 6.
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Figure 13. Renderings of human poses sampled from the predicted
distribution, conditioned on the 2D key point positions of all joints,
excluding the left arm and the right leg. The log likelihood corre-
sponding to a normalized density is displayed above the consid-
ered sample.

C.3. Rendered Samples from Unconditional Prior

To demonstrate HuProSO3’s capability as a generative
model for sampling realistic and diverse human poses, we
present renderings of randomly selected samples in Fig. 12.

C.4. Rendered Samples from 2D to 3D Uplifting

Based on the setting and conditioning in Fig. 5, we ren-
der 12 poses that are sampled from the learned distribution
p(R|c) in Fig. 13, where c is derived from 2D key points
with the left arm and the right leg occluded. These sam-
ples, displayed in Fig. 13, reveal that while the model often
predicts straight right legs, the left arm’s pose varies sig-
nificantly, which follows the training dataset’s distribution.
For joints where the given 2D key point positions allow in-
ferring their rotations, the estimates show less variability, as
we also visualize in Fig. 5 of the main paper for the standard
deviation of the joint’s positions and rotations.

Optimization-based methods are limited to inferring a
single pose from occluded key points. While this approach
might yield accurate results on average, as reflected in mean
metrics, it fails to capture the inherent ambiguity in these
scenarios.

Table 7. Log likelihood evaluation for inverse kinematics (IK), ro-
tation distribution estimation given 2D key points (2D to SO(3)),
and an unconditional prior. Unless specified otherwise, results per-
tain to the AMASS test dataset.

Method IK 2D to SO(3) Prior Prior (Train)

HuManiFlow [32] 100.8 83.6 - -
Ours 217.5 202.2 137.6 184.7
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Figure 14. MGEO and MPJPE for a variation of the mask proba-
bility pm based on one sample and the mean over 10 samples drawn
from HuProSO3 conditioned on partially given 3D key point infor-
mation.
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Figure 15. MPJPEs and MGEOs for different masking probabili-
ties pm and numbers of samples from the learned distribution N .
The metrics are calculated based on the mean of the sampled poses
by computing the average rotation for each joint.

D. Additional Quantitative Results
D.1. Evaluation of Likelihood

We evaluate the likelihoods for the unconditional prior with
HuProSO3 and for conditional distributions for HuProSO3
and the HuManiFlow approach in Tab. 7. For the uncondi-
tional prior, the likelihood evaluations also reveal a signifi-
cant gap between the training and test distributions.

D.2. Comparison to Pose-NDF as Pose Prior

We evaluate Pose-NDF as a pose prior by computing the
precision and recall statistics. In a first experiment, we eval-
uate when initializing with noise. However, this does not



Table 8. Summary of precision and recall statistics for the AMASS
database [19], both on test and training datasets. The reported val-
ues represent the cumulative geodesic distances for all joint ro-
tations between samples from the dataset and the evaluated pose
prior. Pose-NDF 1 was optimized using random intialization,
Pose-NDF 2 using slightly noised poses from the AMASS test
dataset.

Test (mean [median]) Train (mean [median])

Recall Precision Recall Precision
Pose-NDF 1 [34] 17.7 [17.7] 14.5 [14.4] 17.5 [17.2] 14.7 [14.4]
Pose-NDF 2 [34] 4.83 [4.77] 5.63 [5.42] 6.11 [5.92] 6.88 [6.65]
Ours 3.44 [2.95] 4.24 [3.71] 2.93 [2.64] 3.90 [3.59]

Table 9. Summary of precision and recall statistics for the AMASS
database [19], both on test and training datasets. The reported val-
ues represent the cumulative geodesic distances for all joint ro-
tations between samples from the dataset and the evaluated pose
prior.

Test (mean [median]) Train (mean [median])

Recall Precision Recall Precision

GAN-S [4] 3.76 [3.34] 4.51 [4.23] 3.57 [3.34] 4.38 [4.13]
6D NF 3.66 [3.16] 4.50 [4.00] 3.55 [3.32] 4.42 [4.10]
Ours 3.44 [2.95] 4.24 [3.71] 2.93 [2.64] 3.90 [3.59]

Table 10. Comparison to GFPose-rot: Minimum MGEO and min-
imum MPJPE are computed based on 20 generated samples for the
occlusion of leg (L), arm and hand (A), and upper arm (S). The re-
sults are presented for 10k random samples from the AMASS test
datasets. The GEO metrics are averaged over 21 joints.

Method minMGEO minMPJPE

Occlusion L A S L A S

GFPose-rot (N=1) 0.104 0.108 0.089 7.9 14.3 4.9
GFPose-rot (N=20) 0.103 0.107 0.088 7.8 14.1 4.8
Ours (N=1) 0.217 0.254 0.208 20.8 39.0 18.7
Ours (N=20) 0.070 0.081 0.067 5.7 11.2 5.2

result in realistic poses since Pose-NDF generates realistic
poses when the initialized poses are close to the training dis-
tribution. In a second experiment, we add a small amount of
noise to poses of the test distribution (σnoise = 0.1), which
provides realistic poses. However, such an initialization
inherently biases the optimization towards in-distribution
samples. Therefore, it is highly depending on the similarity
between training and test distribution.

D.3. Comparison to GFPose-rot

Directly comparing to GFPose [3] is not possible since it
was not trained on the AMASS database and it is param-
eterized with joint positions. Therefore, we adapt the im-
plementation of GFPose and we train it on the AMASS
database using the axis-angle representation using the same
hyperparameters as in the original repository. For the occlu-
sions, we apply the same masking strategy as in our imple-

Table 11. Comparison of per-vertex errors [mm] across various
occluded joints in the AMASS test dataset: left leg (L), left arm
and hand (A+H), and right shoulder and upper arm (S+UA). The
results are based on 60 frames as reported in [34].

Method L A+H S + UA

VPoser [25] 25.3 85.1 99.8
HuMoR [26] 56.0 78.3 47.5
Pose-NDF [34] 24.9 78.1 76.3

Ours (N=10) 34.0 57.5 34.5

mentations. We follow [3] and evaluate using the minimum
error sample. We use 10 times fewer samples than GFPose
(N=20) and we report the results for minimum geodesic dis-
tance and joint position error in Tab. 10. In our experiments,
GFPose-rot collapses to the mean pose. While our results
are worse for single sample evaluations, our model provides
more diverse samples than GFPose-rot.

Here, a disadvantage of our model becomes apparent:
Since our base distribution is uniform on SO(3), comput-
ing the mode as when considering a Gaussian distribution
is not possible. This might be a reason, why generating an
individual sample does not achieve competing results.

While GFPose-rot achieves partially better results, it
does not provide a normalized density.

D.4. Per-Vertex Errors for Inverse Kinematics and
Occluded Joints

We compare HuProSO3’s per-vertex error performance
with HuMoR [26] using TestOpt, VPoser [25], and Pose-
NDF [34] for 60 frames, following the protocol in [34]. We
present the per-vertex error results for inverse kinematics
and occluded joints in Tab. 11. While the optimization-
based methods achieve a better performance for the MPJPE
metric, the presented results in Tab. 11 also support that the
wrong rotation estimates result in worse performance when
comparing all mesh vertices on the rendered human.

D.5. Evaluations for Varying Numbers of Samples

We present additional evaluation results for varying num-
bers of samples that are used for computing positional and
rotational errors in Fig. 15 and Fig. 14. Fig. 15 extends
the visualizations from Fig. 14 by presenting MPJPE and
MGEO metrics for different masking probabilities and sam-
ple counts drawn from HuProSO3, with each joint masked
with a probability of pm.

Baselines and Setup. In addition to HuProSO3, as de-
tailed in the main paper, and the model based on the Hu-
ManiFlow implementation, we also compare with an im-
plementation that uses normalizing flows defined on SO(3)
as for HuProSO3, but with fixed ancestor-conditioning as
suggested in [32]. We train this model following the same
strategy as for HuProSO3. For evaluation, joints are ran-



domly masked with a probability of pm = 0.3. We present
the errors for the average joint rotations (as in the main pa-
per) and, additionally, based on the pose out of the N sam-
pled poses that results in the lowest considered error metric
(minimum error sample). We compute all results based on
10k randomly drawn samples from the AMASS test dataset.

Discussion. Our analysis reveals that normalizing flows
designed with the SO(3) modeling approach seem to more
effectively capture the joint distribution than the approach
by [8] applied in [32].While the error for a single sample
(N = 1) is similar across both ancestor-conditioned mod-
els (SO3 AC and HF AC) for the selected masking strat-
egy, the SO(3)-based model yields lower minimum errors
with an increased number of samples. However, ancestor-
conditioning along the kinematic tree does not fully cap-
ture all statistical dependencies. Consequently, HuProSO3,
which is not limited to fixed conditioning sequences and op-
erates on the product space of all SO(3) manifolds, demon-
strates notably lower minimum and average pose errors, re-
flecting its superior capability in learning dependencies of
the joint rotations.
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