Constrained Layout Generation with Factor Graphs

Supplementary Material

1. Additional Experiments
1.1. Analysis of Class-wise IOU scores

In Tab. 2, the pixel-level IOU scores with macro averaging
appear to be relatively low when compared to micro aver-
aged scores. In this section, we investigate the reason for
this discrepancy in scores. Macro IOU scores are computed
by first calculating the class-wise IOU scores separately be-
fore averaging across each class. Therefore, we list the IOU
scores for each class separately and compare them for both
Graph2Plan and FP-FGNN.

The RPLAN dataset has a total of 15 classes. Tab. 5
shows the results of class-wise IOU scores for each of the 15
classes in the dataset. Firstly, for almost all the classes, FP-
FGNN scores improve on Graph2Plan scores by a signifi-
cant margin. The relative improvement is especially large in
DiningRoom, ChildRoom, GuestRoom and Storage. How-
ever, for some of the classes like Wall-in, Entrance and Ex-
terior Wall, the IOU scores are quite low and seems to be
the primary reason for overall lower IOU-Macro score rel-
ative to IOU-Micro, since all classes are equally weighted
in Macro averaging. It is worth noting that these rooms i.e.
Wall-in, Entrance and Exterior Wall are mostly irregular i.e.
not easily modeled with a bounding box and and hence, it
is not surprising that the scores for these classes are lower.
Additionally, bounding box for classes like Wall-in are usu-
ally too thin and hence, the scores are likely to be zero if the
predicted box is not aligned to the same position as ground
truth.

1.2. Analysis of Room overlap

One notable difference between the predicted floorplans
generated by Graph2Plan and FP-FGNN is the appearance
of the internal boundaries between the rooms. This is
clearly visible in Fig. 3 which shows that the internal bound-
aries between rooms are uneven in the floorplans generated
by Graph2Plan. In contrast, the floorplans generated by FP-
FGNN contain straight boundaries which closely resemble
the ground truth. We seek to investigate the reason for this
difference, since both methods use the same CRN-based ap-
proach in generating the floorplan image from the set of
bounding boxes.

One plausible reason for this difference is the amount
of overlap between the predicted bounding boxes of each
model. Ideally, the overlap between predicted bounding
boxes should be minimal, although there may be some over-
lap between ground truth bounding boxes due to the non-
rectangular shapes of rooms. Measuring the average over-
lap between predicted bounding boxes provides some infor-
mation about the internal boundaries of the predicted rooms.

In Fig. 6, we show the area of intersection between each
pair of predicted bounding boxes. Firstly, the average over-
lap area in the Ground Truth bounding boxes is 95.33. The
GT box overlap area is significant since living room boxes
would overlap with other rooms. FP-FGNN’s average over-
lap area of 94.84 is similar to GT overlap and is significantly
less than 112.4 of Graph2Plan, a reduction of around 18%.
This supports the observation of clear and straight bound-
aries in floorplans generated by FP-FGNN. This reduction
is likely to contribute to the clear and straight boundaries
observed in the floorplans generated by FP-FGNN.

Roomtype LivingRoom MasterRoom Kitchen Bathroom DiningRoom ChildRoom StudyRoom SecondRoom
Graph2Plan 0.8593 0.8400 0.7164 0.6870 0.2018 0.4577 0.7559 0.8214
FP-FGNN 0.8470 0.9062 0.8013 0.7721 0.5743 0.8029 0.8487 0.8868
Roomtype  GuestRoom Balcony Entrance  Storage Wall-in External ExteriorWall

Graph2Plan 0.1433 0.7594 0.0000 0.2862 0.1303 0.9987 0.0000

FP-FGNN 0.4193 0.8686 0.0000 0.6066 0.3822 0.9987 0.0000

Table 5. IOU scores per each class for Graph2Plan and FGNN.

Method

Graph2Plan

FP-FGNN  GT

Average overlap

112.47

94.84 95.33

Table 6. Average area of intersection between all pairs of predicted boxes for Graph2Plan and FGNN.



Method Box-level Pixel-level

IOU - Macro IOU - Micro  Accuracy 10OU-Micro
FP-FGNN 0.8685 0.9165 0.8900 0.8017
w/o box factors 0.7300 0.8182 0.8180 0.6923
w/o relation factors 0.8180 0.8789 0.8645 0.7609
w/o boundary factors 0.6163 0.7149 0.7903 0.6488
w/o complete factor 0.7841 0.8476 0.8473 0.7351

Table 7. Ablation study on the type of factors.

Method Box-level Pixel-level

IOU - Macro  IOU - Micro  Accuracy IOU-Micro
FP-FGNN 0.8685 0.9165 0.8900 0.8017
w/o inside, surrounding 0.8481 0.9018 0.8790 0.7840
w/o left, right 0.8517 0.9051 0.8838 0.7918
w/o above, below 0.8412 0.8973 0.8804 0.7862
wlo lefiabove, leftbelow, = o0 0.8898 08710  0.7710

rightabove, rightbelow

Table 8. Ablation study on different relation factors.

Method Box-level Pixel-level

IOU - Macro IOU - Micro  Accuracy IOU-Micro
FP-FGNN 0.8685 0.9165 0.8900 0.8017
w/o distance feature 0.8411 0.8976 0.8831 0.7907
w/o surrounding feature 0.8333 0.8918 0.8806 0.7867

Table 9. Effectiveness of the boundary factor features.

Method Box-level Pixel-level
IOU - Macro  IOU - Micro  Accuracy IOU-Micro
FP-FGNN(w/ Softmax) 0.8685 0.9165 0.8900 0.8017
w/ MAX 0.8436 0.8995 0.8739 0.7760
w/ SUM 0.7514 0.8272 0.8479 0.7358
w/ MEAN 0.8238 0.8848 0.8751 0.7778

Table 10. Effectiveness of the message aggregation function.

1.2.1 Ablation Studies

Different types of factors. In order to gain a better un-
derstanding of how our model functions, we study the im-
portance of each type of factor. As shown in Tab. 7, we find
that (1) every type of factor is critical and that (2) higher-
order factors are more important than pairwise relation fac-
tors. Furthermore, we discover that (3) boundary factors,
which capture structural constraints, are especially impor-
tant. Without these boundary factors, our performance mea-
surement, which is based on IOU-macro, experienced a sig-

nificant 25% drop.

Different types of relations. To further understand our
model’s functioning, we conduct an ablation study on dif-
ferent types of relation factors. To do this, we grouped to-
gether some of the factors that capture the same constraints,
such as inside and surrounding relations. Tab. 8 shows that
capturing relative positional information using these factors
is highly effective. Additionally, we find that each group
of constraints contributes to the overall performance of our



model. These findings demonstrate the importance of care-
fully considering the various types of relation factors and
their ability to capture critical constraints when designing
and refining models for specific tasks.

Features of boundary factors. In earlier ablation studies,
we discussed the critical role played by boundary factors in
our model’s performance, underscoring the importance of
meeting structural constraints. Hence, we further investi-
gate the different types of features we designed to capture
the properties of each corner point, i.e., the distance be-
tween each corner point and the outer bounding box that
encloses the boundary, and the binary boundary mask sur-
rounding the corner point at a small offset of . As shown
in Tab. 9, both features contribute to the effectiveness of the
model. However, the distance feature is relatively more in-
formative.

Message aggregation function. A crucial aspect of our
message passing scheme is the message aggregator, which
allows for weighted aggregation of messages using a learn-
able softmax-based aggregator. This function enables vari-
ables to learn from the subset of factors that are most rele-
vant to them. To demonstrate the effectiveness of this ap-
proach, we compared our solution with three other aggrega-
tion functions: MAX, SUM, and MEAN. Our results, pre-
sented in Table 10, show that the MAX aggregator is the
most effective among the three. Intuitively, MAX acts as
a selection function compared to MEAN and SUM, which
further validates the motivation behind our design for the
softmax aggregator.

1.3. Iterative Design

We present additional illustrations of the iterative design
process with FP-FGNN. Fig. 7 shows examples where a
given boundary is initialized with Living room, Master
room, Kitchen and Bathroom at arbitrary locations. The
floorplans are updated according to the user inputs lead-
ing to design of different floorplan layouts from the same
boundary. The high fidelity of the predictions along with
the good alignment with the boundary given only partial in-
puts benefits the iterative design process.

1.4. Additional qualitative Results

In this section, we present a series of additional randomly
selected floorplans generated by our model, FP-FGNN.
Fig. 8 and Fig. 9 show direct output images of FP-FGNN
and Fig. 10 and Fig. 11 show the floorplans after post-
processing. Alongside each generated floorplan, we pro-
vide its corresponding ground truth floorplan to facilitate a
comparative analysis of their similarities. The visualized re-
sults of this analysis demonstrate that FP-FGNN generates
floorplans that bear the closest resemblance to the ground

truth ones. Therefore, our model appears to have success-
fully learned the key features and spatial relationships that
underlie the creation of accurate floorplans.

1.5. Implementation Details

Our code is written with Pytorch [24]. We train our model
with a learning rate of 0.001, decay rate of 0.0001 along
with a step size of 7, hidden dimension of 128 and with
batch size of 60. 4 iterations of message passing are per-
formed. We use Adam [13] as the optimizer.
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1. LR, MR, Kitchen, Bath initialised with 2. Bath at north, LR at center north, 3. Place Balcony at south, add CR-2 at south 4. Swap Kitchen with CR-1,
standard sizes at arbitrary locations CR-1 at north west east corner decrease height of Bath by 20%
1. LR, MR, Kitchen, Bath initialised with 2. Bath at north, MR at south east, . . o, . . L
standard sizes at arbitrary locations CR-1 at north cast 3. Add CR-2 at south, increase width of CR-1 by 10% 4. Make kitchen height twice its width,

Increase width of Bath by 20%

1. LR, MR, Kitchen, Bath initialised with 2. Kitchen at north west corner, Bath at south, . o,
standard sizes at arbitrary locations CR-1 at north east 3. Balcony at north east corner, 4. Increase width of Bath by 20%.

1. LR, MR, Kitchen, Bath initialised with

. 3. MR at north east, Balcony 4. Add CR at south east corner,
standard sizes at arbitrary locations 2. Kitchen at north west comer, Bath at south, at north east corner, Increase width of Bath by 20%.
[ Living Room (LR) [ Master Room (MR) O «itchen [ Common Room (CR) [ Bathroom [l Balcony

Figure 7. Additional examples showing iterative design process with FP-FGNN
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Figure 8. Comparison of floorplans generated by FP-FGNN with the ground truth.
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Figure 9. Comparison of floorplans generated by FP-FGNN with the ground truth.
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Figure 10. Comparison of floorplans generated by FP-FGNN with the ground truth after post-processing.
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Figure 11. Comparison of floorplans generated by FP-FGNN with the ground truth after post-processing.
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