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1. Introduction

In this supplemental document, we provide more imple-
mentation details and discuss limitations of TokenHMR.
Please refer to the supplemental video for a brief review
of the paper and more qualitative results.

2. More Implementation Details

2.1. Data Preparation for Tokenizer

For pose tokenization, we use 21 body pose parameters
following Vposer [7]. As shown in Tab. 3 of main paper,
we evaluate our tokenization in two settings: in-distribution
and out-of-distribution. For in-distribution, we train
on the training set of AMASS [6] and evaluate on the
test set of AMASS. To show the efficacy of tokeniza-
tion, we also evaluate on an out-of-distribution yoga
dataset, MOYO [9]. For training, we use the following
datasets: {CMU, KIT, BMLrub, DanceDB, BMLmovi,
EyesJapan, BMLhandball, TotalCapture, EKUT,
ACCAD, TCDHands, MPI-Limits} with a weighting of
{0.14, 0.14, 0.14, 0.06, 0.06, 0.06, 0.06, 0.06, 0.04, 0.04, 0.04,
0.16}, respectively.

2.2. Joint-wise Thresholds for TALS

To establish effective joint-wise thresholds for TALS (Sec. 4.2),
we conducted a detailed statistical analysis on the 20221018 3-
8 250 batch01hand 6fps validation subset of the BEDLAM [2]
dataset, encompassing over 34k samples of diverse human 3D
pose, shape, and camera perspectives. Table 1 presents the thresh-
old distances for each joint used by TALS.

2.3. Augmentations

Data augmentation plays a pivotal role in enhancing the robustness
and generalization capabilities of HPS regressors. Hence, follow-
ing HMR2.0, we perform various augmentations. These include
random translations in both x and y directions with a factor of
0.02, scaling with a factor of 0.3 and rotations with 30 degrees.
Other augmentations include horizontal flipping and color rescal-
ing. We observe that extreme cropping i.e. removing part of the
human body limb in random also improves the robustness to oc-
clusion.

3. Discussion
3.1. Pose Space Analysis

We analyse the pose space by evaluating reconstruction of OOD
poses that are not present in the training set. We do this by train-
ing on AMASS and testing on MOYO. The qualitative result is

2D Joints Threshold SMPL Joints Threshold

OP Nose 0.00850 Pelvis 0.46
OP Neck 0.00649 LHip 0.22
OP RShoulder 0.00748 RHip 0.21
OP RElbow 0.01103 Spine 0.15
OP RWrist 0.01356 LKnee 0.33
OP LShoulder 0.00742 RKnee 0.30
OP LElbow 0.01097 Thorax 0.17
OP LWrist 0.01414 LAnkle 0.20
OP MidHip 0.00974 RAnkle 0.27
OP RHip 0.01127 Thorax 0.12
OP RKnee 0.01663 LToe 0.29
OP RAnkle 0.00565 RToe 0.28
OP LHip 0.01126 Neck 0.24
OP LKnee 0.01616 LCollar 0.26
OP LAnkle 0.00533 RCollar 0.26
OP REye 0.00830 Jaw 0.28
OP LEye 0.00831 LShoulder 0.29
OP REar 0.00737 RShoulder 0.32
OP LEar 0.00743 LElbow 0.35
OP LBigToe 0.00544 RElbow 0.35
OP LSmallToe 0.00551 LWrist 0.62
OP LHeel 0.00536 RWrist 0.59
OP RBigToe 0.00565 LHand 0.20
OP RSmallToe 0.00582 RHand 0.20
OP RHeel 0.00573
LSP RAnkle 0.00554
LSP RKnee 0.01515
LSP RHip 0.00986
LSP LHip 0.00998
LSP LKnee 0.01520
LSP LAnkle 0.00511
LSP RWrist 0.01288
LSP RElbow 0.01106
LSP RShoulder 0.00711
LSP LShoulder 0.00710
LSP LElbow 0.01092
LSP LWrist 0.01388
LSP Neck 0.00648
LSP Head Top 0.00766
MPII Pelvis 0.00931
MPII Thorax 0.00647
H36M Spine 0.00677
H36M Jaw 0.00744
H36M Head 0.00752

Table 1. Thresholds for 44 2D joints and 24 SMPL joints. 2D
joint names start with the skeleton origin, where OP stands for
OpenPose [3]. LSP [5], MPII [1], and H36M [4] are the datasets.

shown in Fig. 1 which shows good generalization to the out-of-
distribution yoga poses from MOYO [9]. In contrast, we find that
noisy test poses are not well recovered.



Figure 1. t-SNE visualization of unseen poses (3D body joints) re-
constructed by our tokenizer trained on AMASS only. We are able
to reconstruct the out-of-distribution Yoga poses from MOYO. GT
is ground-truth poses and PR is predicted poses.

3.2. TALS loss vs Filtering Strategy
Similar to HMR2.0, we employ filtering strategies to ensure high-
quality 2D image alignment of the p-GT. Filtering strategies, how-
ever, are “all or nothing”; i.e. data samples are either rejected or
considered. Our TALS loss is different in that it uses all the filtered
pseudo-ground-truth samples up to a threshold, after which the su-
pervision is scaled down. This goes beyond standard filtering and
data cleaning pipelines.

4. Limitation Discussion
4.1. Poor 2D Alignment under Weak-perspective

Camera Model
The experimental analysis in Sec. 3 shows that using existing
flawed camera projection models results in overfitting to 2D key-
points and that this leads to learning biased poses. To avoid this
issue, we design a lenient TALS supervision training strategy and
incorporate prior knowledge through our token-based pose repre-
sentation. As shown in Fig. 2 a), with the combination of loose
2D supervision using TALS and built-in prior in representation,
TokenHMR is able to estimate reasonable 3D poses but these do
not always align well in 2D image when there is foreshortening.
As expected under the weak-perspective camera model, the more
obvious the perspective distortion, the worse the 2D alignment.

4.2. Failure Cases
In this work, we introduce TokenHMR to reduce camera/pose bias
and alleviate the ambiguity with a tokenized pose prior. How-
ever, TokenHMR still has some limitations that could be further
explored in future work.

As shown in Fig. 2 b), foreshortening remains challenging
without a better camera model. In cases like Fig. 2 c), the global
orientation is ambiguous when only considering body cues. We
may need to exploit more cues from the face and the feet to de-
termine the correct global orientation. Future work could try to
extend TokenHMR to full-body pose estimation (i.e. SMPL-X) to
address this issue.

5. Future Work
Future work should, obviously, address the camera projection
problem directly by recovering more accurate camera estimates.

a) Due to the loose supervision of TALS, our prediction does not 
align well in 2D under weak-perspective camera.

b) Depth-wise ambiguity is still very challenging. 

c) Global orientation estimation sometimes fails because facial 
and foot cues are not thoroughly explored.

Figure 2. 2D alignment problem and failure cases.

Even with such improvements, we anticipate that the token rep-
resentation retains value as it consistently improves performance
across varied test scenarios. A promising next step is to extend the
tokenization over time. Recent work on generating human motion
from text exploits tokenized representations of human motions [8].
Looking further ahead, an intriguing direction for future research
involves exploring the application of our token-based pose rep-
resentation with Large Language Models (LLMs). The discrete,
robust nature of our pose tokens, designed for 3D human pose es-
timation, presents an opportunity to bridge the gap between com-
puter vision and natural language processing.
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