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Supplementary Material

In this supplementary material, we provide further de-
tails and qualitative examples that could not fit into the main
text of the paper.

A. Limitations and Future Work
(a) Our approach relies on supervised correspondences,

which limits the amount of usable data. We remedied
this by using pretrained frozen foundation model fea-
tures, which improves generalization.

(b) We train on the task of dense feature matching which is
an indirect way of optimizing for the downstream tasks
of two-view geometry, localization, or 3D reconstruc-
tion. Directly training on the downstream tasks could
improve performance.

B. Frozen Feature Evaluation
We use an exponential cosine kernel as in DKM [17] with
an inverse temperature of 10. We train using the same
training split as in our main experiments, using the same
learning rates (note that we only train a single linear layer,
as the backbone is frozen). We use the regression-by-
classification loss that we proposed in Section 3.4. We
present a qualitative example of the estimated warps from
the frozen features in Figure 5.

C. Architectural Details
Encoders: We extract fine features of stride {1, 2, 4, 8} by
taking the outputs of the layer before each 2 × 2 maxpool.
These have dimension {64, 128, 256, 512} respectively. We
project these with a linear layer followed by batchnorm to
dimension {9, 64, 256, 512}.

We use the patch features from DINOv2 [39] and do not
use the cls token. We use the ViT-L-14 model, with patch
size 14 and dimension 1024. We linearly project these fea-
tures (with batchnorm) to dimension 512.
Global Matcher: We use a Gaussian Process [40] match
encoder as in DKM [17]. We use an exponential cosine
kernel [17], with inverse temperature 10. As in DKM, the
GP predicts a posterior over embedded coordinates in the
other image. We use an embedding space of dimension 512.

For details on Dθ we refer to Section 3.3.
Refiners: Following Edstedt et al. [17] we use 5 re-
finers at strides {1, 2, 4, 8, 14}. They each consist of 8
convolutional blocks. The internal dimension is set to
{24, 144, 569, 1137, 1377}. The input to the refiners are the
stacked feature maps, local correlation around the previous
warp of size {0, 0, 5, 7, 15}, as well as a linear encoding of

the previous warp. The output is a B ×Hs ×Ws × (2 + 1)
tensor, containing the warp and an logit offset to the cer-
tainty.

D. Qualitative Comparison on WxBS
We qualitatively compare estimated matches from RoMa
and DKM on the WxBS benchmark in Figure 6. DKM fails
on multiple pairs on this dataset, while RoMa is more ro-
bust. In particular, RoMa is able to match even for changes
is season (bottom right), extreme illumination (bottom left,
top left), and extreme scale and viewpoint (top right).

E. Metrics
Image Matching Challenge 2022: The mean average ac-
curacy (mAA) metric is computed between the estimated
fundamental matrix and the hidden ground truth. The er-
ror in terms of rotation in degrees and translation in meters.
Given one threshold over each, a pose is classified as accu-
rate if it meets both thresholds. This is done over ten pairs
of uniformly spaced thresholds. The mAA is then the aver-
age over the threshold and over the images (balanced across
the scenes).
MegaDepth/ScanNet: The AUC metric used measures
the error of the estimated Essential matrix compared to the
ground truth. The error per pair is the maximum of the ro-
tational and translational error. As there is no metric scale
available, the translational error is measured in the cosine
angle. The recall at a threshold τ is the percentage of pairs
with an error lower than τ . The AUC@τ◦ is the integral
over the recall as a function of the thresholds, up to τ , di-
vided by τ . In practice, this is approximated by the trapezial
rule over all errors of the method over the dataset.

F. Details on Ablation Validation Set
The validation set is made from random pairs from the
MegaDepth scenes [0015, 0022] with overlap > 0 (where
the overlap is defined as IoU of SfM 3D tracks). To measure
the performance we measure the percentage of estimated
matches that have an end-point-error (EPE) under a cer-
tain pixel threshold over all ground-truth correspondences,
which we call percent correct keypoints (PCK) using the
notation of previous work [17, 56].

G. Loss
As in DKM [17] we set warp prediction loss to zero when-
ever the previous prediction has an error larger than some
fixed threshold. For scales {1, 2, 4, 8} we set this threshold



Figure 5. Evaluation of frozen features. From top to bottom:
Image pair, VGG19 matches, RN50 matches, DINOv2 matches,
RoMa matches. DINOv2 is significantly more robust than the
VGG19 and RN50. Quantitative results are presented in Table 1.

to {4, 8, 16, 32} pixels at a resolution of 560 pixels respec-
tively. In addition, we also set the target for the confidence

Table 9. SotA comparison on Aachen v1.1 [46]. Measured in
AUC (higher is better). HLoc [43] is used for all methods.

Method ↓ Day Night

SP+SG 90.3 / 96.5 / 99.3 75.9 / 91.1/ 100.0
LoFTR 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
PATS 89.6 / 95.8 / 99.3 73.8 / 92.1 / 99.5

RoMa 90.9 / 96.5 / 99.4 78.5 / 92.7 / 100.0

loss in these regions to be zero.
It can be noted here that this heuristic can in itself be re-

garded as a type of robust loss, as we set the loss for large
outliers to zero. Our generalized Charbonnier loss can be
seen as a more smooth version of this. We found that com-
bining the Charbonnier loss with clipping yielded the best
results.

Furthermore, as in DKM, the usage of binary cross-
entropy in the loss functions requires us to include xA /∈ C,
as the marginal could otherwise trivially be maximized.
Like in DKM we choose all xA on the image grid.

H. Theoretical Model
Here we discuss a simple connection to scale-space theory,
that did not fit in the main paper. Our theoretical model of
matchability in Section 3.4 has a straightforward connection
to scale-space theory [27, 32, 63]. The image scale-space is
parameterized by a parameter s,

L(x, s) =

∫
g(x− y; s)I(y)dy, (22)

where

g(x; s) =
1

2πs2
exp

(
− 1

2s2
∥x∥2

)
(23)

is a Gaussian kernel. Applying this kernel jointly on the
matching distribution yields the diffusion process in the pa-
per.

I. Further Details on Match Sampling
Dense feature matching methods produce a dense warp and
certainty. However, most robust relative pose estimators
(used in the downstream two-view pose estimation evalu-
ation) assume a sparse set of correspondences. While one
could in principle use all correspondences from the warp,
this is prohibitively expensive in practice. We instead fol-
low the approach of DKM [17] and use a balanced sampling
approach to produce a sparse set of matches. The balanced
sampling approach uses a KDE estimate of the match distri-
bution pθ(x

A, xB) to rebalance the distribution of the sam-
ples, by reweighting the samples with the reciprocal of the
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Figure 6. Qualitative comparison. RoMa is significantly more robust to extreme changes in viewpoint and illumination than DKM.

KDE. This increases the number of matches in less certain
regions, which Edstedt et al. [17] demonstrated improves
performance.

J. Runtime Comparison

We compare the runtime of RoMa and the baseline DKM at
a resolution of 560×560 at a batch size of 8 on an RTX6000
GPU. We observe a modest 7% increase in runtime from
186.3 → 198.8 ms per pair.



K. Visual Localization on Aachen v1.1
We evaluate RoMa on the Aachen Day-Night v1.1 bench-
mark using the pipeline of HLoc [43] (v1.4). We present the
results in Table 9.


