
Partial-to-Partial Shape Matching with Geometric Consistency

Supplementary Material

z = �1 z = 0 z = 1
x = �1 x = 0 x = 1 x = �1 x = 0 x = 1 x = �1 x = 0 x = 1

y
=

�
1

y
=

0
y
=

1

Figure 9. We generate our PARTIALSMAL dataset from shapes of the SMAL dataset [47] by rotating a plane with normal vector (x, y, z)
around the origin and cutting off one half of the shape (as shown in gray). We show the resulting 26 generated partial shapes (red) of an
exemplary cougar shape. The shown values x, y, z in the table correspond to the normal vector (x, y, z).

7. Data Preprocessing

Orientation and Manifoldness. Our algorithm requires
all shapes in our datasets to be edge-manifold, vertex-
manifold, and oriented. We consider a shape to be oriented
if all triangle normals point outwards which we ensure for
every shape. We achieve vertex manifoldness by duplicat-
ing each non-manifold vertex, and use the libigl2 library
to achieve edge-manifoldness. Furthermore, we remove all
disconnected shape parts.

Shape Decimation. The complexity of our Integer Linear
Program increases quadratically with the number of trian-
gles of respective shapes X and Y . For manageable run-
times and memory consumption when solving our Integer
Program (Eq. (6)), we reduce the amount of triangles of
shapes X and Y . To achieve reduction in the number of tri-
angles, we employ a straightforward edge collapse method,
where two vertices are merged into one during each step of
the reduction process. We apply these reduction steps un-
til a predefined number of vertices is attained. We reduce
a partial shape X proportionally to its surface area A(·) to
100 ·A(X) number of triangles.

Feature Computation. We compute features W(X) on
the full-resolution shape X and transfer them to the low-
resolution counterpart. This involves associating each
low-resolution vertex with a high-resolution vertex using
the edge-collapse algorithm. Additionally, we compute

2https://libigl.github.io

Voronoi areas for each vertex on the low-resolution shape.
We then average the features of all high-resolution vertices
that fall within the Voronoi area around the corresponding
mapped high-resolution vertex.

8. PARTIALSMAL Dataset Generation

The first step of generating the PARTIALSMAL dataset is
mean-centering all shapes of the SMAL test dataset [47].
We then define planes with origin at (0, 0, 0) and normals
(x, y, z), with (x, y, z) 2 {�1, 0, 1}3\(0, 0, 0). The shape
is then cut along this plane, i.e., all triangles above the plane
(all triangles lying on the side of the plane with positive
normal direction) are discarded. We consider the largest
connected part of the remaining triangles as the resulting
partial shape. We show examples of generated shapes in
Figure 9.

9. Ablation Studies

We show analysis in terms of runtime, performance and
memory consumption. Additionally, we reason the choice
of our objective function and compare our method to the
comparison method in terms of overlapping regions.

9.1. Reduction of Optimization Time

For a sample shape, we display the optimization time over x
(i.e. number of binary elements equal to one) in Figure 10.

9.2. Scalability

Our method’s scalability is constrained by quadratically
growing memory consumption and exponentially increas-

https://libigl.github.io

10 30 50 70 90
0

4

8

12

•

x for (1T� = x)

Ti
m

e
(s

)

RUNTIME

Time (s) Min Obj

Figure 10. Optimization Time for linear subproblems of the min-
imum mean algorithm of one example shape w.r.t. number of bi-
nary variables, that equal 1. We observe that the minimal mean
solution often needs the least optimization time.

4 6 8 10 12
0

2

4

6

8

10

Faces ⇥104

Ti
m

e
(h

)

RUNTIME

4 6 8 10 12
0

1

2

3

4

Faces ⇥104

Si
ze

Se
ar

ch
Sp

ac
e
⇥
10

5 MEMORY

Figure 11. The runtime and memory consumption on high reso-
lution shapes highly relate on the problem instance and the feature
quality. The green line visualizes the trend.

0 5 10

40

60

80

log(Time (s))

�
m

Io
U

,⇤
A

U
C

G
eo

Er
r MEAN IOU/AUCGeoErr

DPFM

Sm-Comb

Ours

Figure 12. Our method exceeds the comparison methods in terms
of mean IoU (circle) and AUCGeoErr (square), but is slower in terms
of optimization time.

ing runtime. However, our coarse-to-fine scheme extends
our method’s applicability to high-resolution shapes by
propagating the matching to the full resolution (in the main
paper, we use the full resolution given in the datasets).
In Figure 11 we show runtime and memory consumption
(w.r.t. search space size) of high resolution shapes. Note
that the runtime and memory consumption heavily rely on
the problem instance. The green line shows the trend of
runtime and memory.

9.3. Runtime vs. Performance

We plot mean IoU (") and AUCGeoErr(") over log of op-
timization time (see Figure 12). Despite slower average
opt. time (Sm-Comb: 49s; DPFM train: 118.2min, test:
1.31s; Ours 299.05min) our method yields improved perfor-
mance. We hope that our work will inspire follow-up works
that explore improved solvers for such problems. While our
work is not competitive to current SOTA methods w.r.t. run-
time, we consider our contribution as a vital first step to

Sum [0] Sum [0.01] Sum [0.1] Sum [1] Ours

51.23 52.53 53.12 52.53 69.29

Table 3. We compare mean IoU of our normalized objective func-
tion with the sum objective and weighting factor � (in brackets) on
the CP2P TEST dataset. Our normalized version performs best.

solving the extremely challenging and yet underexplored
partial-to-partial shape matching setting.

9.3.1 Objective Function

We normalize our objective function by the number of ele-

ments in �:
⌦
C,�

↵

1T� .
We show in our ablation study in Table 3 that this nor-

malization improves performance over using only the sum
as the objective function

⌦
C,�

↵
or adding a penalty func-

tion to the sum objective
⌦
C,�

↵
� �1T� in terms of mean

IoU.

9.3.2 Performance in terms of Percentage of overlap-

ping region

With an increasing percentage of the overlapping region, we
see increased performance in our method. For a substantial
amount of overlapping region, we observe similar results
between the method from Sm-comb [37], DPFM [3], and
our method, which makes sense as it is close to a full-to-full
matching. For more partiality, our approach outperforms
the comparison methods. We show the results in Figure 13.

10 30 50 70 90
0

20

40

60

80

100

% Overlapping Region

M
ea

n
Io

U
(x

10
0)

CP2P TEST

Sm-comb [37]
DPFM [3]
Ours

10 30 50 70 90
0

20

40

60

80

100

% Overlapping Region

M
ea

n
Io

U
(x

10
0)

PARTIALSMAL

Sm-comb [37]
DPFM [3]
Ours

Figure 13. Our methods’ performance increases with an increas-

ing percentage of overlapping region. With larger overlapping
regions, it performs similarly to Sm-comb [37] and DPFM [3].
With smaller overlapping regions, our method outperforms the
others.

10. Failure Cases & Artefacts

We can not guarantee geometric consistency at boundary
edges because of the lack of adjacent neighboring triangles.
The interior of two triangle patches is still matched geomet-
rically consistent, see Sec. 5 in the main paper. We show
some failure cases in Figure 14.

Figure 14. We observe some failure cases based on the missing
geometric consistency on boundary edges.

11. Dataset Analysis

During our research we noticed that qualitatively similar
shapes in the SHREC16 CUTS test dataset do also appear
in the SHREC16 train dataset, although the vertex posi-
tions have some slight jitter. In Figure 15 we visualize two
plots that show the cumulative number of test shapes (ver-
tical axis) versus the distance between each test shape and
the nearest training shape. While in the CUTS dataset we
oberserve 47 shapes with this problem the HOLES dataset
is not affected.

0.00 0.10 0.20 0.30 0.40

0

50

100

150

200

Mean Min Dist

N
um

Sh
ap

es
<

M
ea

n
M

in
D

is
t

CUTS

0.00 0.20 0.40 0.60

0

50

100

150

200

Mean Min Dist

N
um

Sh
ap

es
<

M
ea

n
M

in
D

is
t

HOLES

Figure 15. The Mean Minimum distance of the SHREC16 dataset
is almost zero for 47 shape in the SHREC16 CUTS dataset. The
SHREC16 HOLES dataset is not affected by this problem.

12. Search Space Pruning

Below we elaborate on the bounds that we use for our search
space pruning. Let j, k 2 N. We know that g(j+1)�g(j)
1. We start from this and first derive that h(j+1)�h(j)
1
j , where h(j) = g(j)

j .
Starting with

g(j + 1)� g(j) 1, (7)

we divide by j, so that we get

g(j + 1)

j
�

g(j)

j

1

j
. (8)

Plugging in h(j) = g(j)
j gives

g(j + 1)

j
� h(j)

1

j
. (9)

As g(j + 1) � 0 and j + 1 � 0, g(j+1)
j �

g(j+1)
j+1 , so that

we get

g(j + 1)

j + 1
� h(j)

1

j
. (10)

By definition h(j + 1) = g(j+1)
j+1 , so that we obtain

h(j + 1)� h(j)
1

j
. (11)

Let us now consider h(k)� h(j), where k � j. We can use
inequality (11) to bound this expression from above: We
know that h(j+1)�h(j) 1

j , h(j+2)�h(j+1) 1
j+1 ,

.., h(k) � h(k � 1) 1
k�1 . By adding up this sequence of

inequalities we obtain h(k)� h(j)
Pk�1

i=j
1
i .

	. Introduction
	. Related Work
	. Integer and Combinatorial Optimization in Shape Matching
	. Partial-to-Full Shape Matching
	. Partial-to-Partial Shape Matching

	. Partial-to-Partial Shape Matching
	. Notation
	. Optimization Problem
	. Search Space Reduction
	. Implementation Details
	Upsampling to Original Resolution
	Runtime versus Optimality Trade-Off

	. Experimental Results
	. Datasets
	. Experimental Setup
	. Comparison Methods
	. Overlapping Region Prediction
	. Correspondence Quality
	. Faster Optimization

	. Discussion and Limitations
	. Conclusion
	. Data Preprocessing
	. PARTIALSMAL Dataset Generation
	. Ablation Studies
	. Reduction of Optimization Time
	. Scalability
	. Runtime vs. Performance
	Objective Function
	Performance in terms of Percentage of overlapping region

	. Failure Cases & Artefacts
	. Dataset Analysis
	. Search Space Pruning

