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A. Training details

SPOC uses SIGLIP image and text encoders that produce
84 ⇥ 768 (npatch ⇥ dimage) features and 768 dimension fea-
ture per text token. We use 3-layer transformer encoder and
decoder with 512 dimensional hidden state (dvisual) and 8
attention heads for the goal-conditioned visual encoder and
action decoder, respectively. We use a context window of
100. All models are trained with a batch size of 224 on
8⇥A100 GPUs (80 GB memory / GPU) with the AdamW
optimizer and a learning rate of 0.0002. Single-task models
are trained for 20k iterations, while multi-task models are
trained for 50k iterations. Unlike RL which involves sim-
ulation in the training loop, IL has the advantage of saving
the training episodes to disk offline. Using 16-bit mixed
precision training SPOC trains at approximately 1.2 hours
per 1000 iterations, an FPS of ⇡3500, compared to an FPS
of ⇡175 for RL implemented using AllenAct [73]. We find
that data augmentation both during training and testing is
critical for model performance, both in simulation and real,
when training on MP4 compressed videos. In particular,
we always apply color jitter, gaussian blurring, and random
cropping while posterization and sharpness adjustments are
applied with specified probabilities to the RGB frames from
both cameras. In addition to the RGB frames, we incorpo-
rate an object-in-hand sensor to indicate whether the
agent is holding an object. For details on how these sen-
sors are impremented in real experiments, see Sections C.1
and C.2. In the decoder, we additively combine the embed-
ding of object-in-hand sensor with visual representa-
tions, sinusoidal temporal position encodings, and learned
embeddings of previous action. This sensor is important for
tasks involving manipulation, such as FETCH and PICKUP,
where it enables the agent to learn when to issue a terminate
action to end an episode.

For the model with detection (SPOC w/ GT Det or SPOC
w/ DETIC), we encode the coordinates of the bounding
boxes using sinusoidal positional encoding followed by a
linear layer with LayerNorm and ReLU. We also add coor-
dinate type embeddings to differentiate the 10 coordinates
(5 per camera - x1, y1, x2, y2, and area). The coordinate en-
codings are then concatenated with the two image features
and text features before feeding into Transformer Encoder
Evisual. When no object is detected in the image, we use
1000 as the dummy coordinate value and set area to zero.

A.1. RL training details.
We train our RL baselines using DD-PPO with 64 samplers
on a single machine with 8 A6000 GPUs, closely following
the ProcTHOR implementation. During training, we use
the Adam optimizer with a fixed learning rate of 3e-4. As
DD-PPO is an on-policy algorithm, a replay buffer is not
utilized during training. The step count for DD-PPO is set at
128. The same data augmentations are applied during both
training and eval. The max episode length is 600 steps for
all tasks except RoomVisit which has a 1000 step max. The
RL baselines train for double the wall-clock time compared
to SPOC, totaling around 40M environment steps.

We trained SPOC for two days and RL baselines for four
days both using a single machine with 8 GPUs, resulting
in 384 GPU hours for SPOC and 768 GPU hours for RL
baselines

B. Data generation
In this section, we describe our CHORES benchmark, a chal-
lenging collection of thousands of tasks corresponding to 10
task types in virtual household scenarios. We first focus on
the definition of the procedural houses and then proceed to
detail the rationale and details of the included task types.

B.1. Houses
Houses are procedurally generated using ProcTHOR [18], a
powerful procedural environment generator for the THOR
simulator [39]. ProcTHOR can generate complete house-
hold environments by sampling floorplans, adding doors
and windows, placing large object types and adding decora-
tions and lights. The differences with respect to the original
ProcTHOR houses are (1) the use of specific layouts spec-
ifications; and (2) the inclusion of a much larger set of 3D
objects imported from Objaverse [17] and complemented
with extended annotations for scale, standard pose, and de-
scriptions.

B.1.1 Layouts

House layouts are sampled from the 14 specifications
shown in Table 10, where the numbers between parenthe-
ses after each layout identifier indicate the relative frequen-
cies of the layout specifications, and the numbers after the
dashes are area weights for the rooms or groups of rooms
within the corresponding parent groups in the hierarchy.
The room types included in the layout specifications are



8-room-3-bed (1/8)
Group/4

Group/2
Kitchen/3
Living room/3

Group/1
Living room/2
Bathroom/1

Bedroom/1
Bedroom/1
Group/2

Bedroom/1
Bathroom/1

7-room-3-bed (1/8)
Group/3

Group/2
Kitchen/3
Living room/3

Group/1
Living room/2
Bathroom/1

Group/2
Bedroom/2
Bedroom/2
Bedroom/2

2-bed-2-bath (1/8)
Group/2

Bedroom/2
Bathroom/1

Group/2
Bedroom/2
Bathroom/1

Group/2
Kitchen/3
Living room/2

4-room (1/8)
Group/2

Bedroom/2
Bathroom/1

Group/2
Kitchen/3
Living room/2

5-room (1/16)
Group/2

Bedroom/2
Bathroom/1

Bedroom/2
Group/2

Kitchen/3
Living room/2

2-bed-1-bath (1/16)
Group/2

Kitchen/3
Bathroom/2
Living room/3

Bedroom/1
Bedroom/1

kitchen-living-bed (1/16)
Group/2

Kitchen/3
Living room/2

Bedroom/1

kitchen-living-bed-2 (1/16)
Group/2

Kitchen/1
Living room/1

Bedroom/1

bed-bath (1/16)
Bedroom/2
Bathroom/1

kitchen-living (1/16)
Kitchen/1
Living room/1

kitchen (1/32)
Kitchen/1

living (1/32)
Living room/1

bed (1/32)
Bedroom/1

bath (1/32)
Bathroom/1

Table 10. House generation layouts. The 14 included layouts
comprise large-sized, medium-sized and small-sized houses, in-
cluding one-room houses. The relative frequency of each layout is
shown between parentheses after each layout identifier.

kitchen, bathroom, living room, and bedroom.

The resulting layout distribution covers large, medium, and
small houses, as well as single-room houses. The aver-
age number of rooms per house is 4.5. A total of 191,568
houses are sampled from this distribution, with ratio of
10:1:1 across training, validation, and test. A sample house
from each of the 14 layout specifications is shown in Fig. 6.

B.1.2 Assets

Combining assets already present in THOR with a subset
of high-quality assets from Objaverse [17], an asset collec-
tion we call ObjaverseHome, 41,133 3D assets are available
to be placed in procedural houses, including structural ele-
ments like doors and windows, large pieces of furniture and
appliances, or small objects to be placed on free surfaces.
For all ObjaverseHome assets, we extended the available
annotations with scale, standard pose, descriptions, cate-
gory, and nearest WordNet synset (from the 2022 version of
the Open English WordNet [23, 47]). The relative frequency
of assets assigned to each synset is illustrated in Fig. 4. The
total number of synsets used to label the ObjaverseHome
and THOR assets (equivalent to the number of object cate-
gories) is 863. In some tasks, we are interested in the agent
being able to recognize more generic identifiers for a tar-
get object, which can be obtained in WordNet by retrieving
hypernyms of the target object’s labeled synset. In com-
bination with the 863 used to label the assets, and exclud-
ing too generic hypernyms like entity.n.01, structure.n.01,
or product.n.02, up to 1,371 synsets can be used to refer
to the 41,133 assets, besides other open-vocabulary refer-
ring expression modalities like affordances or descriptions
included in CHORESNAV. In addition to synsets shown
in Fig. 4, Fig. 7 illustrates the relative frequency of hy-
pernyms that may be used to refer to assets for tasks like
OBJNAVAFFORD and OBJNAVRELATTR. See Sec. B.2.1
for details on how these synsets are used to specify targets
for CHORESNAV.

Affordances. Using GPT-3.5, we extract five short de-
scriptions of common usages for each synset, given the
synset’s definition, and a score indicating the confidence in
the correctness of the usage. An example query is shown in
Table 11. For our 863 synsets, the total number of unique
affordances we obtain is 4,315. Some examples are “Giv-
ing on special occasions” for present.n.02, “Cooking food
on stovetop” for burner.n.02, or “Frozen summer treat on
stick” for ice lolly.n.01.

Once the collection of synset affordances is complete,
we refine it by asking GPT-3.5 to determine whether each
affordance can be reasonably associated to each Objaverse-
Home asset labeled with the synset it generated from, this
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Figure 6. Variety of layouts. Sample houses for each of the 14 layout specifications.

Describe, in five words or less each, up to five common usages of
an object with category “stockpot” (definition: “a large pot for
making stock, soup, or stew”). Format each line of your response
as
[CONFIDENCE] [USAGE DESCRIPTION]
where [CONFIDENCE] is a number between 0 and 10 indicating
your confidence in the correctness of the usage (10 being most con-
fident).

Table 11. Example GPT query for synset uses.

time conditioning on the asset’s description, with a query
like the example in Table 12. Please note that we do not
perform this refinement step for THOR assets3.

3In order to allow material randomization without compromising the
validity of the descriptions and also taking into account the relative unifor-
mity of THOR assets within their respective categories, we decided not to
include descriptions for THOR assets.

For each of the following possible uses of an object with category
aerosol and description “A blue maya brand can of acrylic spray
paint.”, indicate whether each use is a common use of the object.
Format each line of your response as
[INDEX] [CONFIDENCE]
where [CONFIDENCE] is a number between 0 and 10 indicating
your confidence in the correctness of the usage (10 being most con-
fident) and [INDEX] is the index of the usage.
1. Applying hair spray.
2. Dispensing air freshener.
3. Dispensing fine particles.
4. Using spray paint.

Table 12. Example GPT query for object uses filtering.

Finally, we generate embeddings for each affordance us-
ing GPT-3’s ada [5] to create clusters of similar affordances,
corresponding to sets of embeddings with cosine similar-



Figure 7. Hypernyms of synsets in procedural houses. Word
map of hypernyms with font size scaled by the counts of corre-
sponding hyponyms among the synsets in Fig. 4.

ity �0.96. One example of such clusters would be the one
composed by the affordances “Adding flavor to recipes”,
“Adding flavor to dishes”, and “Enhancing the flavor of
dishes”. In total, we find 343 such clusters, with an aver-
age size of 2.78 affordances. This information, combined
with the full set of affordances and synsets/assets they ap-
ply to (those for which the confidence score is �6) is used
to sample OBJNAVAFFORD tasks as shown in Sec. B.3.

B.2. Tasks
We define ten task types for domestic environments requir-
ing the agent to learn and use different behaviors and un-
derstand different goal specifications. The behaviors in-
cluded in our datasets and benchmark are navigation, pick
up, fetch, and visit (all rooms in the house). Regarding
goal specifications, we refer to goals by object types, affor-
dances, instance descriptions, local references, room types,
or relative attributes within a room.

The ten tasks we include in our benchmark serve as in-
dicators of the agent’s ability to execute different combi-
nations of elemental navigation, exploration, manipulation,
and vision-language skills. Table 13 summarizes the sets of
elemental skills required to solve each of the tasks.

B.2.1 Goal specifications

The navigate behavior is also combined with a diversity of
goal specifications in CHORESNAV, eliciting the agent to
identify goal objects through different referring expression
types.

Please note that we select target object types by their an-
notated synset among the ones in the Open English Word-
Net [23, 47], which in practice falls back to choosing the
lowest hypernym for the sampled synset shared by any ob-
jects present in the scene4. For example, an armoire asset
coarsely labelled as furniture.n.01, can coexist in a house

4Despite an effort to annotate all objects in the scene with the most
precise possible synset, more generic hypernyms are sometimes used.
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1 OBJNAV X X
2 PICKUP X X
3 FETCH X X X
4 ROOMVISIT X X X
5 OBJNAVROOM X X X
6 OBJNAVRELATTR X X X
7 OBJNAVAFFORD X X X
8 OBJNAVLOCALREF X X X
9 OBJNAVDESC X X X

10 ROOMNAV X X

Table 13. Skill sets required for all task types. Different sets
of skills are required to solve each task. Set identification encom-
passes the ability to recognize a room type as well as explicit local
configurations or relative attributes of objects within a room.

with a chair labeled as chair.n.01 and a table labeled as ta-
ble.n.02, so any of three assets shall be referred to by furni-
ture.n.01, which is the lowest common hypernym.

OBJECTTYPE goal. The natural language instruction
given to the agent refers to the most precise lemma for the
chosen synset (i.e. the one used less often by other synsets).
Any object in the scene that can be addressed by the lemma
in the instruction is a valid goal for the task.

OBJECT-ROOM goal. Similar to object type, but further
constraining the valid goal objects to be present at the be-
ginning of the task in a room of a specific type. This spec-
ification type implies that more instances of the target type
also exist in at least one room of any of the other types.

RELATIVEATTRIBUTE goal. We consider six relative at-
tributes regarding objects of some given type in a spe-
cific room type: highest/lowest, largest/smallest, and near-
est/furthest to/from some anchor type (for which a unique
object exists in the room), implying the presence of more
than one object of the target type in the specified room.

AFFORDANCE goal. For affordances, we provide the
agent with a hypernym covering a subset of the objects
in the scene such that some of the objects in the subset
are plausible candidates to provide the requested affordance
while some others might not, i.e., the agent must be able to
determine which objects correspond to the given hypernym,
and also which of these are also providing the requested af-
fordance.



LOCALREFERENCE goal. We consider two types of lo-
cal reference specifications: (1) an object of given type near
two other objects of other types, and (2) an object of given
type on top of an object of another type. In either case, this
task specification implies than more than one object of the
target type exists in the house.

DESCRIPTION goal. In this case, the specification is an
open-vocabulary description of the target object type, as-
suming uniqueness of the valid target, meaning that no other
object in the house responds to the given description. All
OBJNAVDESC tasks use ObjaverseHome assets as targets,
since we do not include asset descriptions for THOR assets.

ROOM goal. In ROOMNAV, the goal is just a room type,
which can correspond to one or more of the rooms in the
house.

B.3. Sampling Methods

We first describe a set of criteria applied onto potential tar-
gets to decide upon their acceptance as task goals, and then
proceed to outline each task sampler.

Filtering. In order for objects to be valid targets, we im-
pose certain constraints dependent on how the agent needs
to interact with the object. For example, in navigation
tasks, we impose that the target objects are below a max-
imum height of 1.1 m, that a path can be computed by
THOR to an interactable location near the objects, and that
the bounding boxes for the objects have (1) a largest face
with diagonal larger than 10 cm; and (2) a middle dimen-
sion of at least 4 cm. In manipulation tasks, we addition-
ally impose that the object can actually be picked up and
the maximum dimension of its bounding box is less than 50
cm.

ROOMVISIT sampling. The agent is just spawned at a
random location within a room sampled uniformly among
the house rooms.

OBJNAV sampling. We attempt to balance the distribu-
tion of target synsets by keeping counters of the num-
ber of times we have sampled each synset and sequen-
tially selecting candidate synsets from a random sequence
of synsets available in the scene sampled with replacement
with weights given by the inverse of the respective counts.
If any of the scene objects with the sampled synset passes
the navigation filters described above, we accept the task.
The agent is then spawned as in ROOMVISIT sampling.

FETCH sampling. Similar to OBJNAV sampling, but us-
ing the manipulation filter, also enforcing the object to be
valid for pickup.

PICKUP sampling. Similar to FETCH sampling, but with
the agent spawned at a random location where any of the
target objects is at interactable distance, and oriented such
that the manipulation camera is aligned with the object’s
center.

OBJNAVROOM sampling. Similar to OBJNAV sampling,
but enforcing that the target synset has multiple instances
in the house, and that all instances of the target synset for
the target room type are in a single room, besides having
at least one instance of the target type in any rooms of any
other type. If several rooms are feasible, we randomly pick
one.

OBJNAVRELATTR sampling. In addition to the target
type count in OBJNAV sampling, we also keep counts of
the number of times we sample different relative attribute
types (among smallest, largest, highest, lowest, nearest to,
furthest from). Similar to OBJNAVROOM sampling, we en-
force that the target synset can be found in a specific room
type, but this time without enforcing that the object is also
present in a different room type. We also enforce that mul-
tiple instances of the target synset are present in a single in-
stance of the room type. Then, we try relative attribute types
prioritizing by lowest counters. For smallest (largest), we
accept the task if the smallest (largest) object of type in the
room has a bounding box with diagonal at least twice (at
most half) of the second largest (smallest) object of given
synset in the room. For highest, we check that the bottom of
the bounding box of the highest object of given synset in the
room is the highest placed among the objects of the given
synset, and also that the top of the second highest box is less
than half way between the bottom and top of the highest
one. The criterion for lowest is the reciprocal. For furthest
from, we first extract anchor objects in each room, which
can be beds, counter tops, dining tables, fridges, sinks, so-
fas, televisions, or toilets, with the condition that only one
instance exists in the room. Then, for the given synset, we
check whether the bounding box distance from the second
furthest object from the anchor is less than 70% of the dis-
tance of the furthest one. The criterion for nearest to is built
similarly. If the target object (and potentially the anchor)
pass the navigation filters, the task is accepted.

OBJNAVAFFORD sampling. We constrain target synsets
to be hypernyms of the synsets in the scene and sample
the available hypernyms following the same procedure as in
OBJNAV sampling. For each synset in the scene child of the



target hypernym, we collect all confident affordances and
merged affordances from the clusters defined above, and
list the objects in the scene that provide each affordance.
We then randomly sample an affordance and check that at
least one of the objects providing the affordance pass the
navigation filter to accept the task.

OBJNAVLOCALREF sampling. This is similar to
OBJNAVRELATTR sampling, but having two possible
modes: near two reference synsets and on one reference
synset. For near, we search for two additional synsets such
that two instances in the house have bounding boxes at
a distance <50 cm from the bounding box of the current
target synset, such that no other such synset triplet is
present in the scene and no other such triplet is present
in the scene with bounding box distances <2 m, to avoid
ambiguity. We constrain the reference instances to not be
any of floors, walls, doors, windows, shelves, drawers,
beds, counter tops or sofas. For on, we search for a unique
combination of the target synset lying on an instance of
a reference synset, which we constrain not to be any of
floors, walls, doors, windows, shelves or drawers. In both
cases, the target object and the references must pass the
navigation filters.

OBJNAVDESC sampling. Similar to OBJNAV sampling,
but constraining the assets for the sampled synset to be part
of ObjaverseHome (i.e., containing a natural language de-
scription), and ensuring that a single instance of the sampled
asset is present in the scene. The navigation filter must be
passed by the target object.

ROOMNAV sampling. In this case we keep counts of the
number of times we sample different room types, and sam-
ple prioritized room types.

B.4. Planners
We define planners able to solve each of the task types with
a two-fold goal: (1) generate expert trajectories for super-
vised learning; and (2) validate the feasibility of a sampled
task specification. We first define two subroutines for navi-
gation and manipulation that are reused by several planners
and then proceed to outline each planner. Unless otherwise
specified, if any phase in the planner fails to complete dur-
ing the execution of the planner, the trajectory (and task) is
discarded.

Navigation subroutine. This subroutine allows the agent
to approximately follow a shortest path to a target (noting
that the actual shortest path is not necessarily feasible given
the discrete set of actions available for the agent). It allows
to recompute the path if the agent gets stuck given to dis-
cretization errors.

Pick-up subroutine. This subroutine assumes the target
object is at interactable distance with the agent’s manipu-
lation camera aligned. It executes the following steps: (1)
first move the agent arm up until the target object’s height;
(2) rotate the wrist until the grabber is oriented away from
the agent’s body; (3) move the arm out until reaching the
object’s depth; (4) rotate the wrist until the gripper is near
the target object; (5) move the arm down until the grabber is
in contact with the object; (6) close the gripper; (7) slightly
lift the arm with the object in hand. The pickup subroutine
also includes an option to retry pickup in case of either fail-
ure to grab the object during simulation or random choice
(20% probability). This enables the agent to learn local cor-
rections for small deviations from the gold trajectory.

NAVIGATE planner. This planner is used by all tasks in
CHORESNAV with the exception of ROOMNAV, i.e., for
navigation with all possible goal specifications other than
room goal. Given the agent spawned in a random location
within the house and a list of valid target object identifiers
in the scene, the planner selects the nearest target in terms
of geodesic distance, and executes the navigation subrou-
tine on the chosen path. Once the final position is reached,
the planner proceeds to align the navigation camera with the
target object and signal task termination.

ROOMNAV planner. Similar to navigate, the planner de-
termines the nearest room center in terms of geodesic dis-
tance and approximately follows the nearest path to the cen-
ter of the nearest room of the given type via the navigation
subroutine. Once the center is reached, the planner signals
task termination.

PICKUP planner. The first phase executes navigation to
an interactable location for the nearest target object. Then,
the agent rotates to align the manipulation camera with the
target object and proceeds to execute the pick-up subroutine
(with at most one failed pickup phase). Once the object is
in the gripper, the planner signals task termination.

FETCH planner. The fetch planner assumes the target ob-
ject is in view, and initially allows to move the base closer to
the target (as in regular navigation), and then proceeds with
the pick-up subroutine described above before singnaling
task termination.

ROOMVISIT planner. This planner builds a traversal of
the rooms in the house via depth first search and approx-
imately follows the path to each room’s center using the
navigation subroutine. After reaching each room’s center
a subtask completion action is issued, followed by a task
termination signal upon visitng the last room in the house.



Benchmark Categories Tasks Train Eval.
Hs. Ep. Fr. Hs. Ep.

CHORES -S 15

OBJNAV 10K 99K 5M 200 200
PICKUP 8K 65K 3M 171 171
FETCH 13K 114K 12M 172 172
ROOMVISIT 9K 94K 20M 200 200

CHORES -L 863

OBJNAV 10K 99K 6M 216 216
PICKUP 10K 92K 4M 173 173
FETCH 9K 85K 9M 179 179
ROOMVISIT 9K 94K 20M 200 200

Table 14. Number of unique houses, episodes, and frames (train-
ing only) in CHORES.

Benchmark Categories Tasks Train Eval.
Hs. Ep. Fr. Hs. Ep.

CHORESNAV -S 15

OBJNAV 10K 99K 5M 200 200
OBJNAVROOM 2K 21K 1M 181 181
OBJNAVRELATTR 1K 13K 1M 194 194
OBJNAVAFFORD 2K 23K 1M 197 197
OBJNAVLOCALREF 2K 19K 2M 142 142
OBJNAVDESC 1K 13K 1M 144 144
ROOMNAV 2K 22K 1M 200 200

CHORESNAV -L 863

OBJNAV 10K 99K 6M 216 216
OBJNAVROOM 10K 93K 6M 156 156
OBJNAVRELATTR 9K 91K 8M 217 217
OBJNAVAFFORD 10K 99K 5M 228 228
OBJNAVLOCALREF 9K 92K 7M 254 254
OBJNAVDESC 10K 95K 6M 268 268
ROOMNAV 9K 87K 5M 200 200

Table 15. Number of unique houses, episodes, and frames (train-
ing only) in CHORESNAV.

B.5. Exploration behavior
Our exploration planner for investigating shortest-path us-
ability searches rooms in a depth-first manner, as in our
ROOMVISIT planner, with one addition: instead of simply
navigating to the center of the room, it iteratively navigates
toward unseen objects in its current room until at least 75%
of objects in that room have been seen, at which point it
searches the next room for its target object. Our expert ex-
ploration is object-centric - it has access to and uses sub-
stantially more privileged information. When a target ob-
ject is seen during this process, it immediately navigates
towards it. This is in contrast to Frontier-Based Exploration
[59, 80], where empty sections of an explicit map are filled
greedily.

B.6. Benchmark data
In Tables 14 and 15 we list the number of episodes, houses,
and expert trajectory frames for the train split of CHORES
and CHORESNAV. We also list the number of episodes and
houses in the evaluation split. The number of unseen assets
present in the Evaluation splits for the four combinations of
{CHORES, CHORESNAV } with {-S, -L } is shown in Table
16.

Regarding the variety in behaviors and natural language
instructions, in Fig. 9 we show the distribution of plan-
ner trajectory lengths for all tasks in each of the train-
ing splits, and in Fig. 8 we show the distribution of target
synsets across all splits. Beyond this variety, please note

Benchmark Unseen assets % unseen assets Houses
CHORES -S 1,746 24.0% 727
CHORES -L 1,740 24.2% 737
CHORESNAV -S 2,129 23.5% 1,209
CHORESNAV -L 2,079 22.1% 1,413

Table 16. Unseen assets in evaluation houses.

that some task types introduce a large number of additional
concepts in the natural language instructions: for example,
each OBJNAVDESC instruction uses a unique natural lan-
guage description of the target asset.

Regarding the complexity of the (virtual) training and
evaluation environments, in Fig. 10 we show the distribu-
tion of the number of rooms for houses included in each of
the splits. Note that we only count each house once, re-
gardless of how many times it appears in the corresponding
dataset. Similarly, in Fig. 11 we show the corresponding
distribution of house areas.

Curation of benchmark To ensure a robust and repre-
sentative evaluation dataset, we initially curate a subset of
3,000 episodes from distinct validation houses for each task.
A recursive rejection process is then applied, prioritizing
tasks with higher uniqueness across dimensions such as ob-
ject type/synset, lemma, hypernym, and task-specific pa-
rameters. For example, in OBJNAVROOM, balancing ex-
tends to the target object’s room, while ROOMVISIT is bal-
anced on the number of rooms in the house. Manual final
filtration of benchmark tasks concludes with average of 195
instances per task, enhancing the reliability of our evalua-
tion framework.

C. Sim-to-real transfer
C.1. Hardware design.
The physical and simulated embodiment of our agent is
based on the Hello Robot Stretch RE-1 [37] mobile ma-
nipulator. We equip the Stretch with two identical Intel
RealSense 455 fixed cameras, namely the navigation and
the manipulation camera, both with a vertical field of view
of 59� and capable of 1280⇥720 RGB-D image capture.
The navigation camera is placed looking in the agent’s for-
ward direction and points slightly down, with the hori-
zon at a nominal 30�. The manipulation camera is placed
90� in clockwise direction apart from the navigation cam-
era around the vertical axis (i.e., it looks to the right of
the robot’s forward direction, at the manipulator) and also
points slightly down, also with a nominal 30� horizon. A
30� horizon for each camera was chosen to optimize the
agent’s perspective of its functional working space and po-
tential navigation/manipulation targets. Quirks of fabrica-
tion and attachment mean that real horizons may have some
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Figure 8. Frequency of target synsets for CHORES -S, CHORES -L, CHORESNAV -S, and CHORESNAV -L

variability up to ±3�. We calibrated all platforms with
an Aruco marker setup (shown in Fig. 12) that matched
in simulation and real to validate the real horizons were
near-nominal and varied the simulated camera horizons in
training data generation. The Stretch is equipped with the
standard lift and telescoping arm, which allows reaching at
heights of up to 110 cm and distances of up to 86.7 cm from
the vertical line passing through the manipulation camera’s
center of projections. The STL files for 3D printing the
dual-camera mount will be made available. The mount as
designed may be adjusted for horizons in [0�, 60�].

C.2. Sensors.

The primary input is the RGB sensors corresponding to both
Intel 455 cameras, which for our purposes to match simula-
tion return resized images of 396⇥224 pixels. The RGB im-
ages are then cropped to 384⇥224. A binary ObjectInHand
sensor is provided by determining if gripper effort (provided
by Stretch API) corresponds to a positive grasp with force
applied as opposed to an open gripper.
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Figure 9. Distribution of planner trajectory lengths in training
episodes for all task types. x axis: trajectory lengths; y axis: fre-
quency. For plot legibility, we have clamped all episode lengths to
have a max value of 300 in these plots (in training, these episodes
can be up to 1000 steps long), this explains the spike at length 300
for some tasks.

C.3. Real Evaluation Environments

We asses the performance of our models on OBJNAV and
FETCH in a 6-room apartment also used in Phone2Proc[19],
Pickup in RoboThor [16], and Explore in both environ-
ments. The 6-room apartment contains environment vari-
ations wholly unseen at train time, including: a new config-
uration (multiple rooms off a long corridor), two new room
types (office and corridor), rooms with non-orthogonal wall
alignment, and many unseen object instances. These fac-

tors, combined with traditional sim-to-real challenges like
substantial texture variations and dynamic lighting changes,
contribute to a comprehensive evaluation of the proposed
method’s robustness and generalization capabilities. The
environments are showcased in agent trajectory videos
highlighted in the supplementary website included along
with this PDF.

C.4. Grasping

In the real world we leverage detection and depth for heuris-
tic last-step grasp planning using arm motions alone. If the
gripper isn’t close enough or grasping would require base
motions, the grasp is considered failed. For potentially suc-
cessful attempts, we use detection with DETIC and instance
segmentation from FastSAM [86], aligning the gripper with
the projected object center and approaching from above.
This approach, adapted for the Stretch RE1’s limited dex-
terity, lacks considerations for object disturbance or protru-
sions and is susceptible to segmentation or detection issues,
impacting overall success. We therefore report manipula-
tion task success based on policy success (object proxim-
ity) and full success (both policy and heuristic grasping) in
Table 9.

C.5. Real task evaluation details

Object-oriented episodes each have three starting positions
which are shared across objects, e.g. “navigate to an apple”
is evaluated three times: once from the living room, once
from the middle of the corridor, and once from the kitchen.

OBJNAV. Target objects are Sofa, Bed, Chair, Apple,
Vase, and Houseplant, each from three starting positions.

FETCH. Target objects are Apple, Vase, and Houseplant
from the same three starting positions. In one small change
from OBJNAV episodes, object instances are replaced with
instances which better fit into Stretch’s grasping envelope
and in some cases at a better height for interaction, but avail-
ability and placement are nearly identical.

PICKUP Objects are placed on three different surfaces
(coffee table, desk, and nightstand) at three different
heights. Objects are Apple, Houseplant, Spray Bottle, Mug,
and Vase. Grasping and success are as described in C.4.

ROOMVISIT The full 6-room apartment is explored, and
then partitioned into two 3-room apartments to evaluate the
ability of SPOC to explore large and small spaces. We addi-
tionally explore a section of RoboTHOR and attached work-
room as a novel 3-room apartment.
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Figure 10. Distribution of number of rooms in houses used in CHORES -S, CHORES -L, CHORESNAV -S, and CHORESNAV -L. x axis:
number of rooms in the house; y axis: number of houses

D. Discussion
D.1. Failure Analysis

As highlighted in Lines 448-462 of the main paper, our ex-
periments using ground truth object detection demonstrated
a notable improvement of 32% over our RGB-only model.
This significant enhancement shows that the majority of the
failures is due to perception problems. One promising ap-
proach involves training models to utilize the output from
off-the-shelf object detection models, such as DETIC [87],
as input for object recognition. Our real-world evaluations
have shown this method to be effective.

We also hypothesize that pretraining our end-to-end
models on tasks that necessitate a more object-aware policy
could result in further improvements. This approach could
enhance the model’s ability to recognize and interact with
objects in its environment more effectively.

Additionally, our analysis revealed that in the fetch task,

the agent fails to pick up the object 29% of the time when
it is in proximity. These failures are primarily due to the
robotic arm knocking over the object or missing it due to a
slight distance between the grasper and the target object.
Improving the precision of the arm’s movements and its
ability to recover from unsuccessful grasps could signifi-
cantly enhance performance in such tasks.

Furthermore, within the CHORESNAV tasks, the task
involving open vocabulary object descriptions yielded the
lowest success rate. Although a success rate of 30.6% is re-
markable, we believe that enriching the model’s visual and
language representations could substantially benefit its per-
formance. These findings suggest valuable directions for fu-
ture research in improving the effectiveness of robotic task
execution.
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Figure 11. Distribution of house areas (in m2) in CHORES -S, CHORES -L, CHORESNAV -S, and CHORESNAV -L.

(a) Manipulation camera view of calibration setup with best alignment

(b) Manipulation camera view of calibration setup with 3� of misalignment

Figure 12. Simulated and real images of a fixed arrangement of
Aruco markers was used to ensure correct camera horizon.

D.2. Limitations

A primary limitation of our study is the reliance on an off-
the-shelf grasping planner. Integrating this component into
our full end-to-end learning pipeline could potentially en-
hance the model’s efficiency and robustness, particularly in
selecting varied grasp positions on objects. Such integra-
tion necessitates accommodating physical grasping within
the simulation environment.

Another limitation is the robot’s operational speed and
dexterity. Our project is constrained by the capabilities of
commercially available robotic hardware. The development
of faster, more affordable, and lighter robots by the broader
academic and industrial communities would be greatly ben-
eficial for advancing research in this domain.

These limitations offer avenues for future work and un-
derscore the potential for innovation in robotic systems.



D.3. Why are the shortest path trajectories suffi-
cient?

Our intuition is: the huge diversity of our procedural scenes,
large-scale data collection, use of pretrained visual en-
coders, and extensive visual augmentations enable sufficient
state coverage so that generalization is possible. Even given
the above, it is surprising that our agent learns to back-
track; we conjecture that our agent acquires a set of skills
by imitating expert trajectories. During training, the agent
is exposed to trajectories including various skills, such as
navigating between rooms, moving towards objects, and
avoiding collisions. During evaluation, even if the agent
has not observed backtracking behavior, it has encountered
all the necessary subskills. As the agent navigates the envi-
ronment, it switches between different modes (or skills) to
complete the task.
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