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Overview
In the supplement to SHINOBI, a method for 3D joint re-
construction of shape, illumination and materials from in-
the-wild image sequences, we first present additional details
on the method’s architecture (Sec.A.2) and the optimization
(Sec. A.5). In Sec. B we introduce additional qualitative re-
sults from object reconstructions of the NAVI dataset [11]
and add visual examples to our ablation study. Finally, ap-
plications of our reconstructed data are shown in Sec. B.5.
Please also visit our project page for an overview of this
work and further visual results video.

A. Additional Method Details
A.1. NeRF Raymarching

As introduced in Sec. 3 the neural networks in NeRF [18]
output a vector for view-dependent output color c ∈ R3 and
volume density σ ∈ R given a 3D location x ∈ R3 and view
direction d ∈ R3. A camera ray r(t) = o+td is cast into the
volume, with ray origin o ∈ R3 and view direction d. The
final color is then approximated via numerical quadrature
of the integral: ĉ(r) =

∫ tf
tn

T (t)σ(t)c(t) dt with T (t) =

exp(−
∫ t

tn
σ(t) dt), using the near and far bounds of the ray

tn and tf respectively [18]. Originally, the first MLP learns
a coarse representation by sampling the volume in a fixed
uniform sampling pattern along each ray. The second MLP
is then evaluated sampled according to the coarse density
distribution, placing more samples in high-density areas. In
SHINOBI we only use one sampling stage with uniformly
samples along rays. Using a raymarching scheme that skips

empty space based iteratively updated occupancy data could
bring additional performance gain during optimization.

A.2. Architecture

Hybrid hash encoding configuration. The hybrid encoding
features two branches. For the base encoding we use 10
random offset annealed Fourier frequencies for the positional
encoding followed by a small MLP featuring a single hidden
layer with 64 dimensions and silu activation [8]. The output
equals the input dimension (3), again as it is done by Zhu et
al. [33]. We apply BARF’s [16] Fourier annealing and add
random frequencies as offsets to the logarithmically spaced
frequencies [4, 28] to prevent artifacts from axis-aligned
frequencies. The multiresolution hash grid is configured with
16 levels with a base resolution of 8 and a maximum target
resolution of 2048. The embedding dimensions are 2 or 4.
The experiments reported in Sec. 4 of our paper are generated
using 2 dimensions. A slightly better decomposition quality
can be achieved by increasing the dimensionality at the cost
of increased memory consumption and runtime. Hence, the
final feature dimension after encoding and concatenation is
35 or 67. See Sec. A.2 for an explanation of the annealing
strategy applied to the hash grids.
Networks. The main network taking in the encoded features
consists of 3 ReLU [9] activated layers with 64 channels.
An additional linear layer generates the output for the σ
density parameter from the 64 channel activation. Softplus
softplus(x) = ln(1 + ex) [7] is applied to the raw σ. The
directions are encoded using 4 non-annealed regular Fourier
components as in Mildenhall et al. [18] and then, concate-
nated with the main network output, fed to a secondary MLP
to predict the view direction-dependent radiance c̃ used in
the beginning of the optimization. The secondary conditional
network has a hidden dimension of 32 in our case. For the
BRDF prediction a single linear layer compresses the main
network output to 16 channels. From there the BRDF de-
coder is applied which consists of another two layers with
64 channels and ReLU activation each. Each BRDF output;
basecolor, metallic and roughness has its own output layer
followed by a sigmoid activation [3]. An additional diffuse
embedding is added as conditioning to the basecolor branch
before output. The illumination network decoding the per
view latent vector is conditioned by the same configuration
of mapping layers as outlined in Neural-PIL [3].
Multiresolution hash grid level annealing. Inspired by
BARF [16] and Nerfies [21] we apply a coarse-to-fine an-
nealing to the hash grid encoding by weighting the different
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Figure 1. Novel view synthesis compared to existing methods. Additional example objects from NAVI [11] in-the-wild image collections.
SHINOBI robustly reconstructs even when initialized with exteremely coarse poses while e.g. NeROIC [13] does not succeed on some
scenes.

grid levels. Starting with only the features from the low
resolution dense grid and all other features set to zero we
increase the weights of the higher resolution levels gradually
over time (cf. [15, 17]). Similar to the implementation by
Lin et al. we formulate it as a truncated Hann window:

Γk(x;α) = wk(α)
[
sin(2kx), cos(2kx)

]
(1)

wk(α) =
1− cos (π clamp(α− k, 0, 1))

2
(2)

where α ∈ [0, L] with L being the number of resolution
levels of the hash grid encoding.

We also tested the idea of BAA-NGP [17] replicating
embeddings from low-resolution levels but observed reduced
performance in our optimization setting. Similarly, we had
no success with adding a straight-through operator to the
interpolation on the hash grid as proposed in [10].

A.3. Camera Parameterization.

We label initial poses based on 3 simple binary questions:
Left vs. Right, Above vs. Below, and Front vs. Back. This
only takes about 4-5 minutes for a typical 80 image col-
lection. Alternatively, our framework allows to extend the
initialization to a camera multiplex spanning more than one
quadrant. This can enable fully random initialization for
front-facing scenes and image sets featuring rotating cam-
eras with a fixed object distance as shown by Levy et al. [14].
As these constrained settings are uncommon for in-the-wild
collections we discard it here. We use a perspective pinhole
camera model and an initial field of view of 53.13 degrees.
We optimize offsets to the original camera parameters of our
‘lookat + direction’ parameterization as outlined in the main
paper. Here, we encode the trainable lookat parameter ∆d
directly as two direction components, ϕ, θ, which are used
to offset the viewing direction d to obtain the updated d̂ as
follows:

d = (peye +∆peye)− pcenter (3)
θ = arcsin(dy) + ∆dθ (4)
ϕ = arctan2(dx,dz) + ∆dϕ (5)

d̂ = ⟨cosϕ sin θ, sinϕ, cosϕ cos θ⟩ (6)

We limit ∆d to the range [−0.5π, 0.5π].

We also tried other camera parameterizations like the
popular 6D rotation representation by Zhou et al. [32] or
FocalPose [23] that has recently been applied to NeRF with
camera fine-tuning [22]. Interestingly, our lookat + direction
parameterization performs the best in our setting as it seems
to work well with the regularizations on camera poses.

A.4. Regularization and Losses.

Multiresolution hash grid regularization. To regularize
the hash grid encoding we use the following normalized
weight decay as proposed by Barron et al. [1]: LGrid =∑

l mean(Vl) with Vl referring to the grid embeddings at
resolution level l. Computing the sum of the mean per-level
puts a higher penalty on coarser grid levels compared to
naive weight decay over all parameters at once. We find a
weighting of 0.02 to 0.05 work well in our setting and settle
for 0.02 as the final value. We apply gradient scaling to the
gradients for the network by the norm of 0.1. Furthermore,
gradient norm clipping with a clip value of 2.5 is applied to
the camera gradients before the parameter update.
Surface normals regularization. We use the normal direc-
tion loss Lndir from [29] to constrain the normals to face
the camera until the ray reaches the surface. This helps in
providing sharper surfaces without floater artifacts. Addi-
tionally, we observe that the explicit rendering step helps to
constrain the surface normals as noise is reduced compared
to optimization using only the predicted radiance.
Camera regularization. The camera regularization losses
from SAMURAI are kept, particularly one to force the
lookat-direction to point towards the origin (LLookat) and
one to prevent the cameras from moving too far away from
the bounding volume (LBounds) [4]. An additional term on
the magnitude of the camera offset parameters helps to keep
cameras from moving too far too fast with respect to the
initial position due to strong updates in the beginning of the
optimization.
BRDF losses. Joint estimation of BRDF and illumination is
a delicate endeavor. For example, the illumination can easily
fall into a local minimum. The object is then tinted in a bluish
color, and the illumination is an orange color to express a
more neutral color tone, for example. As our image collec-
tions have multiple illuminations, we can force the base color



bc to replicate the pixel color from the input images. This
way, a mean color over the dataset is learned and it becomes
less likely to be trapped in local minima. We evaluate the
Mean Squared Error (MSE) for this: LInit = LMSE(C

s, bc).
Additionally, we add a smoothness loss LSmooth for the nor-
mal, roughness, and metallic parameters similar to the one
used in UNISURF [20] to further regularize BRDF estima-
tion [4].
Image reconstruction loss is a Charbonnier loss:
LImage(g, p) =

√
(g − p)2 + 0.0012 between the input

color from C for pixel s and the corresponding predicted
color of the networks c̃. We also calculate the loss with the
rendered color ĉ which becomes the main loss over time.
This loss is computed over multiple resolution levels as
outlined in Sec. 3 of the main paper whenever patches are
rendered.
Mask losses. In total we use three mask loss terms. The
Lsilhouette as described in Sec 3.2 as well as the binary cross-
entropy loss LBCE between the volume-rendered mask and
estimated foreground object mask and the background loss
LBackground from NeRD [2]. The latter enforces all rays
cast to the background to return 0. Consequently, the total
mask loss is defined as: LMask = λxorLsilhouette + LBCE +
LBackground where λxor is set to 50 and Lsilhouette is nor-
malized by the number of elements in the reference mask.
Final loss ensemble. Overall we compute two loss terms
LNetwork and LCamera which consist of differently weighted
versions of the photometric rendering loss and alignment
losses plus the respective regularizations. The loss to
optimize the decomposition network can be written as
LNetwork = λbLImage(C

s, c̃) + (1 − λb)LImage(C
s, ĉ) +

LMask + λaLInit + λndirLndir + λSmoothLSmooth +
λDecSmoothLDecSmooth+λDecSparsityLDecSparsity. Here, λb

and λa are the optimization scheduling weights described
below in more detail. As long as the camera multiplex has
size m > 1 the camera multiplex consistency loss is added
as follows: LNetwork = LNetwork+0.1(Lmultiplex). To these
losses the camera posterior scaling is applied as in SAMU-
RAI [4]. The camera loss is weighted according to our view
importance scaling instead. Badly initialized camera poses
can still recover over the training duration as they get poten-
tially large updates while cameras that perform well in terms
of the losses are gradually faded out of the optimization.
Additionally, the regularizations from above, LBounds and
LLookat are added.

A.5. Optimization

Optimization scheduling. We use three fading λ variables
to steer the optimization schedule smoothly as visualized in
Fig. A2. Render resolution is continuously increased over
the first half of the optimization while the number of active
multiplex cameras is reduced. This is controlled by λc. Input
image resolution is increased from 100 pixels to a resolution
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Figure A2. Optimization schedule. We use three λ parameter to
scale losses to enable a smooth flow of the optimization parameters.
Additionally, we indicate at which points in time the view impor-
tance weighting is introduced, the focal length parameters start to
get updated and the encoding annealing ends.

of 400 pixels on the longer image side over the first half of the
training. For higher final output resolutions an even larger
downsample factor (> 4) might be needed. This strategy
allows the image patches to include even larger structures
of the objects and improves camera alignment. The direct
color optimization is faded to the BRDF optimization and
the encoding annealing is performed over the first third of
the optimization. λb is used for the BRDF transition and
an independent α value is kept for the annealing. Finally,
λa is used to scale some losses in a non-linear way. Focal
length updates are delayed until a quarter of the optimization
time. We start with the view importance weighting at the
half-way point of the annealing schedule. SHINOBI renders
image patches for most of the training time which adds more
context to each update step, allowing us to add new losses
tailored to camera alignment. The first 1000 steps are trained
using regular random ray sampling, though, to help initialize
a global shape quickly while both the render resolution as
well as the hash grid resolution are low.
Optimizer settings. The ADAM [12] optimizer updates the
network weights based on LNetwork with a learning rate of
1e-3 that is exponentially decayed by an order of magnitude
over the training time. The same decay rate is applied to the
optimizer concerned with the hash grid embeddings. The
gradient are computed based on LNetwork with the hash grid
specific regularization LGrid added. The learning rate of
the camera optimizer is exponentially decayed by an order
of magnitude every 40k steps. As mentioned before the β1
parameter is set to 0.2 for the camera optimizer to stabilize
the training in the presence of noisy gradients. It uses the
gradients computed based on LCamera. The framework is
trained using float16 mixed precision. The coordinate input



to the encoding is 32 bit as is the rendering and illumination
evaluation. The other MLPs and specifically the interpolation
on the hash grids run at 16 bit precision, though.

B. Additional Experiments
B.1. Details on Compared Methods.

In addition to SAMURAI which has been introduced in
Sec. 3 of the main paper we compare against two more
recent methods for in-the-wild object reconstruction.
NeRS stands for Neural Reflectance Surfaces [31] that con-
strain reconstructions using a mesh-based representation.
Starting from manually annotated rough initial poses and
a template mesh the objects are decomposed into a surface
mesh, illumination and surface reflectivity parameterized as
albedo and shininess. We define the dimensions of an initial
cuboid that approximates the object’s bounding box for each
scene in line with [11, 31].
NeROIC presents a multi-stage approach to reconstruct ge-
ometry and material properties of objects from online image
collections. Camera poses are initialized with a COLMAP-
based pipeline and fine-tuned during the first reconstruction
stage. Following high-quality surface normals are estimated
during the second stage. Finally, material properties and il-
lumination are optimized to enable relighting in addition to
novel view synthesis.

B.2. Additional Visual Results

Fig. 1 shows additional qualitative results on objects from
the NAVI dataset compared to the baseline methods. Note,
that the methods work at different image resolutions and
that we show the original output. NeROIC is able to recon-
struct high-frequency detail for scenes that have good initial
poses but shows artifacts or fails on others. NeRS suffers
from its low resolution mesh representation and often inac-
curate camera alignment. SAMURAI and SHINOBI both
reproduce appearance that is closer to the original illumi-
nation setting due to superior decomposition capabilities
while SHINOBI recovers more high-frequency details. Con-
sequently, on the reference free sharpness metric CPBD [19]
our method clearly improves upon SAMURAI and NeRS,
with CPBD scores of 0.82 (Ours) vs. 0.77 for SAMURAI
vs. 0.65 for NeRS on the most challenging subset of the
NAVI scenes where COLMAP reconstruction fails.

B.3. Qualitative Results of Ablations

Fig. B3 shows qualitative results corresponding to the numer-
ical results from the ablation study reported in the main paper.
It can be observed that a robust reconstruction is only pos-
sible using the full configuration of our method. While the
multiplex consistency loss has only minimal impact on this
example the result still shows some visible artifacts and over-
all increased noise level. It is apparent that a plain integration

w/o Multiplex Consistency Loss

w/o Per View Importance w/o Coarse-to-fine

Full

w/o Hybrid Encoding w/o Patch-based Training

Figure B3. Qualitative ablation study. We show view synthesis
results from novel view synthesis on the ‘School Bus’ scene from
NAVI where we ablate components of our method. The visual
results underline the importance of each part.

(a) Only Fourier (b) Fourier faded out

(c) Eval hash grid only (d) Hybrid encoding

Figure B4. Hybrid Encoding Ablation. The Fourier encoding on its own
is band limited, e.g. text is not reconstructed. Fading out the Fourier encod-
ing during training destabilizes the optimization showing the importance
of both encoding schemes. Evaluation using only the hash grid encoding
results in noisy density but sharp texture. Our hybrid encoding yields sharp
results with a consistent density at the object’s surface.

of multi-resolution hash grid encoding does not perform well
on the task of joint camera pose and shape reconstruction
Fig. B4 visualizes how the encoding schemes complement



each other. It has been shown that Fourier encoding together
with a large MLP and a coarse-to-fine scheme does perform
reasonable well for camera optimization [4, 16]. Hence, we
merge the two encoders while keeping the MLP small and
therefore band-limited. The main advantage is the continuity
of the gradients for the coarse geometry that help to pull the
optimization targets closer to the optimum in the beginning
of the optimization. Updates based on higher-frequency de-
tails later in the optimization can propagate through the hash
grids as they are constrained by our additional losses.

Method Translation↓ Rotation °↓
SC ∼ SC SC ∼ SC

PoseDiffusion [30] 0.51± 0.09 0.43± 0.11 41.33± 15.15 43.50± 13.67
HLoc [24, 25] 0.07± 0.13 0.06± 0.10 9.10± 18.75 9.72± 20.08
SHINOBI 0.250±0.0850.28± 0.09 22.84± 16.19 33.00± 19.97

Table B1. Pose estimation on in-the-wild data.. Evaluation of
absolute rotation and translation errors after alignment on the
NAVI [11] in-the-wild scenes. We compare SHINOBI against spe-
cialized camera pose estimation solutions. Note, that HLoc [24]
fails completely on 5 scenes and is only able to recover 55% of
views on average.

B.4. Comparison to other Camera Pose Estimation
Methods

Tab. B1 compares methods for camera pose estimation on
the NAVI in-the-wild scenes [11]. Traditional SfM methods
like COLMAP [26, 27] paired with a neural feature detec-
tion and matching can recover poses with great accuracy but
only succeed on a subset of scenes and images. PoseDiffu-
sion [30] and ID-Pose [5], both fully neural models trained
on large datasets, struggle on these out-of-distribution exam-
ples. We only report a full evaluation on PoseDiffusion as
an example here. We observe that these models take impor-
tant pose cues also from the background of object-centric
image sets. This leads to poor results on in-the-wild image
collections. A simple fine-tuning on masked images did not
improve performance. In our experiments, camera pose es-
timation usually regresses to a front-facing camera layout
for in-the-wild examples featuring different illumination and
object scales. Consequently, our approach appears to be a
good trade-off in-terms of camera pose quality.

B.5. Downstream Applications

The object decomposition into BRDF, illumination and shape
enables us to edit illumination and material independently
of the shape representation to re-light the object, for exam-
ple. Furthermore, we can convert our neural representation
into a parametric model like a mesh and physically based
material suitable for easy integration into standard graph-
ics pipelines. Mesh extraction and asset generation. We
use a modified version of the mesh extraction component

(a) Reconstructed assets under novel illumination

(b) Edited materials

Figure B5. Integration and editing. Although objects are initially
captured under diverse illumination settings we can integrate multi-
ple objects consistently into a scene in the end. BRDF parameters
can be modified independently from the illumination.

Figure B6. Relighting application. View synthesis under three
different illumination settings using the estimated decomposition
for a sample view from the “Tractor” scene.

from SAMURAI [4] to extract triangle meshes from the
learnt volume and the corresponding material parameters.
Marching cubes is used to create an initial mesh. We post-
process the mesh and perform automatic UV unwrapping
using Blender [6]. Finally, textures are extracted by query-
ing our pipeline for the BRDF around the baked surface
locations. The extraction of a mesh takes around 3 minutes.

Relighting and material editing. Our reconstructed assets
can then be easily integrated into existing graphics pipelines.
In Fig. B5 we show a SHINOBI themed scene featuring
objects from the NAVI dataset in a new consistent illumi-
nation environment as it would be required for AR and VR
applications. We can also modify the BRDF parameters inde-



pendently of the lighting. Fig. B6 compares renderings of the
same camera view but lit with different environment lights.
Please also consider watching the supplementary video in-
cluding more examples for the given applications.
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