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numbering from the main text.

A. The Reflectance Model

We describe the full reflectance model we use in DRMNet
which is based on the Disney principled BRDF model [11].
The model is composed of diffuse reflection fdiff , retro re-
flection fretro, and specular reflection fspec
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The diffuse reflection fdiff depends on the angle of inci-
dence θi and that of outgoing direction θo
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)
, (2)

where Fi = (1− cos θi)
5 and Fo = (1− cos θo)

5. The retro
reflection fretro is defined by the metallic parameter γ

fretro = RR (Fi + Fo + FiFo(RR − 1)) , (3)

where RR = 2γ cos2 θd and θd is the angle between the half
vector h and the incident direction. The specular reflection
fspec is based on the microfacet model with the GGX dis-
tribution

fspec =
FDG

4 cos θi cos θo
, (4)

where D is a microfacet distribution function defined by the
roughness parameter α

D =
α4

π ((h · n)2(α4 − 1) + 1)
2 , (5)

n is the normal direction of the surface in the local frame,
and G is the shadowing-masking function
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2

1 +
√
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, (6)

and G = G1(ω
′
i)G1(ω

′
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where η =
2

1−
√
0.08ρs

− 1, and

FSchlick = ρd + (1− ρd)(1− cos θd)
5 , (8)

and

F = (1− γ)Fdielectric + γFSchlick. (9)

B. Objective Function Derivation

Let us derive the objective function of the reflectance map
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(10)
step by step. The objective of the reverse process is to
maximize the marginalized likelihood of the reverse pro-
cess pθ,ϕ(L

(0)
r |L(K)

r ). Instead of directly maximizing this
likelihood, we minimize the negative log likelihood
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Here, Lp is
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By modeling the forward process
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and its reverse process
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the first term of Eq. (12) becomes
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and the second term becomes
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By focusing on those terms related to the model parameters
θ, ϕ, we obtain the simplified objective in the main text (Eq.
(10)).

Figure 1. Samples from the synthetic reflectance map dataset we
create to train DRMNet. The dataset consists of various combina-
tions of HDR environment maps and reflectance.

C. Network Architectures

As in regular probabilistic diffusion models [30, 87], we use
a U-Net with skip connections as the network architecture
for IllNet which we denote as εθ in µθ(L

(k)
r , L

(K)
r ,Ψ

(k)
ϕ ) =

L
(k)
r + εθ(L

(k)
r , L

(K)
r ,Ψ

(k)
ϕ ). The input to IllNet is the con-

catenated observed reflectance map and current reflectance
map, L(K) and L(k), respectively. Each layer of the encoder
and the decoder contains two residual blocks and consists
of 1 to 6 times of 128 channels in increment of 1 from the
highest resolution layer. Each residual block additively em-
beds the current reflectance parameter Ψ(k) to the feature
map. In contrast to a regular probabilistic diffusion model
which uses sinusoidal positional encoding of the time step
together with an MLP to compute the embedding vector, we
directly use an MLP to compute the embedding vector from
Ψ(k). The input observed reflectance map is 128 × 128 in
resolution. At low-resolution layers of 16 × 16, 8 × 8, and
4 × 4, we apply self-attention to the feature map after the
residual block.

For RefNet, we use an encoder of a U-Net with an MLP.
As the same as IllNet, the input to RefNet is the concate-
nated observed reflectance map L(K) and the current re-
flectance map L(k), and the output is a 6-dimensional vector
Ψ(K) of the observed object’s reflectance parameter. Each
layer of the encoder consists of two residual blocks and has
1, 1, 2, 3, and 4 times of 128 channels from the highest-
resolution. The encoder uses the traditional sinusoidal po-
sitional encoding and an MLP to additively embed the time
steps taken so far (K − k) into each residual block. At the
lower-resolution layers of 16 × 16 and 8 × 8, we use self-
attention.

For ObsNet, we use a U-Net with 1, 2, 3, 4, and 5
times of 128 channels at each layer and self-attention at the
16 × 16 and 8 × 8 low-resolution layers. Similar to exist-
ing diffusion inpainting methods [60], the network learns
to inpaint through inverse diffusion by conditioning on the
sparse raw observed reflectance map with missing regions



LIME [53] iBRDF [14]input DPI [49] DRMNet referenceZhu et al. [85]

Figure 2. Additional relighting results for the nLMVS-Real dataset [75]. DRMNet achieves higher qualitative accuracy suggesting its
superior accuracy of reflectance estimates.

filled with noise through concatenation to the input noise
at each step. Inspired by latent diffusion [87], we train for
1000 time steps with conditioned diffusion model and use
50 steps of DDIM [88] at inference to sample a completed
observed reflectance map.

All networks are trained with exponential moving aver-
age of decay rate 0.9999.

The trajectory of the reflectance parameter Ψ(k) that dic-
tates the forward and reverse process is determined by

Ψ(k−1) −Ψ0 = η(Ψ(k) −Ψ0) , (21)

where η controls the rate of change towards perfect mirror
reflection Ψ0. In our experiments, we use η = 0.95. We
set ϵ which is used as a threshold to determine convergence

of Ψ(k) to Ψ0 to 0.01. This means that the maximum time
step is K = 108. The variance of the additive Gaussians
for the forward and reverse steps are set to σ = 0.02 and
δ = 0.025.

D. Dataset

We create a large-scale synthetic reflectance map dataset.
We use the Laval Indoor Dataset [10, 22] and the Poly
Haven HDRIs [2] as the illumination. We split each of
these HDR environment map datasets 8 : 2 into training
and test sets and combine them to obtain the overall training
and test sets. Every time we sample an illumination from
the training set, we sample a random reflectance parameter
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Figure 3. Additional object replacement results for the nLMVS-Real dataset [75]. DRMNet results in qualitatively higher accuracy
suggesting its superior accuracy of illumination estimates.

Ψ(K), viewing direction, and time step k and render three
reflectance maps L

(K)
r , L

(k)
r , and L

(k−1)
r corresponding to

Ψ(K),Ψ(k), and Ψ(k−1), respectively. The reflectance pa-
rameter Ψ(K) is uniformly sampled R6;R ∈ [0, 1]. The
view direction is sampled from a uniformly discretized set
of 64 angles spanning 360 degrees, and the time step k is
uniformly sampled within the range of ||Ψ(0) − Ψ0||2 < ϵ.
Fig. 1 shows samples of these synthetic complete observed
reflectance maps. We used 1730 environment maps for
training and randomly sampled reflectance parameters and
viewpoints. The resulting number of reflectance maps used
for training is about 1.7 million. Training took about 5 days
with an NVIDIA A100 GPU.

These synthetic complete observed reflectance maps are
also used to train ObsNet. We compute normal maps of the
random shapes in [89] to obtain visibility masks of the re-
flectance map. By adding Gaussian noise to the rendered
observed reflectance map and then by masking it with this
visibility mask, we obtain sparse observed reflectance maps,
which are paired with its complete original to train ObsNet.

We also fine-tune it with raw reflectance maps from syn-
thetically rendered random shapes for robustness against
global illumination. As all reflectance maps are in HDR,
we apply log-scale transformations to pass them through
each network. For ObsNet, we take the logarithm for each
reflectance map independently and linearly map them to
[−1, 1]. For DRMNet, we normalize the overall scale of the
forward and reverse process based on the intensity of the
observed reflectance map and compress the brighter values
with log10(x+0.1)+1. The Gaussian noise for each model
is applied after these intensity transforms.

E. Implementations of Past Methods

In this section, we elaborate on the prerequisites and im-
plementations of previous methods for comparative experi-
mental evaluation.

LIME [53] is a method for estimating homogeneous re-
flectance and an environment map. While this method does
not use the object geometry to estimate the reflectance, it



needs a normal map corresponding to the input object image
for environment map estimation. We use the ground truth
normal map for fairness. The environment map is estimated
by mapping specular reflection using the normal map and
adding approximate low frequency illumination with spher-
ical harmonics up to the third order from diffuse reflection.

DPI [49] estimates a spatial-varying BRDF and environ-
ment map from images. For fair comparison, we constrain
the BRDF to be homogeneous. Otherwise, the surrounding
environment reflected on the object surface would be baked
into the spatial-varying BRDF and the estimated environ-
ment maps become random.

ALP [78] needs to first compute a spatial-varying BRDF
from multiple images of an object with known illumina-
tion and geometry. Only after that, the method can esti-
mate an environment map from an image of the same ob-
ject placed in a different environment. To compare this
method with ours on the nLMVS-Real dataset, we use
the multi-view images in the “laboratory” environment to
pre-acquire the BRDF. We use this pre-acquired BRDF to
run ALP on images in other environments, i.e., “build-
ings/chapel/court/entrance/manor.”

Zhu et al. [85] estimate spatial-varying BRDF, geometry,
and out-of-view illumination from a single image of com-
plex indoor scenes. We obtain complete environment maps
by estimating the out-of-view area at the center position of
the input image from the network. This method is signif-
icantly different from ours in its assumptions (wide field-
of-view input images), so we only compare it within this
supplemental material.

F. Additional Qualitative Results
Figure 2 and Fig. 3 show additional relighting and object
replacement results for the nLMVS-Real dataset [75]. We
also compare with Zhu et al. [85] as it explicitly recovers
the BRDF and illumination in the course of indoor inverse-
rendering. As it estimates spatial-varying BRDF, the results
of each method in Fig. 2 show the objects with the same
orientation as the inputs. On the other hand, the objects in
the last column labeled as “reference” have a different ori-
entation, because the viewpoint varies across environments
in the nLMVS-Real dataset. Figure 4 shows the quanti-
tative results on the Delight-Net dataset set [27]. Our re-
sults are qualitatively more accurate, cleanly recovering the
missing frequency components of the illumination, also ev-
ident in the object replacement results, while attaining more
accuracy reflectance close to the ground truth relighting
compared with other methods which reconstruct arbitrary
frequency characteristics of the illumination. iBRDF [14]
comes close in quantitative accuracy but the high-frequency
components of the illumination tends to be overestimated as

evident in the object replacement results. Note again that
ALP knows the reflectance.

G. Ablation Study
We validate the architecture of DRMNet by ablating its
components and comparing them with the full model. We
consider three sets of ablation studies. “W/o Ψ(k)” elimi-
nates the step-wise reflectance estimate as input to IllNet so
that the illumination and reflectance estimation are achieved
independently. This ablation studies the importance of the
confluence of jointly estimating the reflectance and the il-
lumination, rather than independently. “W/o L

(K)
r ” elim-

inates the conditioning on the observed reflectance map
L(K) and achieves the iterative inversion solely based on
the previous reflectance map estimate. This ablation studies
the importance of referring to the observed reflectance map
at every step of illumination estimation. “Once” estimates
the reflectance from the observed reflectance map L

(K)
r and

reuses this initial estimate in the recursive diffusion process.
Table 1 shows quantitative results. The results clearly

show that conditioning IllNet on the observed reflectance
map L

(K)
r which explicitly embodies the forward radiomet-

ric forward process is essential, and that the illumination
and reflectance estimation processes are intertwined so that
conditioning IllNet on the current estimate and recursively
refining the reflectance estimate itself leads to more accu-
rate estimates of both. This is likely because the estima-
tion in the DRMNet recursion operates like alternating op-
timization leading to stable and consistent estimation. The
conditioning on L

(K)
r helps the recursive estimation of the

illumination and reflectance to remain consistent with the
object appearance when combined acting like a reconstruc-
tion loss.

In contrast, the ablation result on the reflectance esti-
mation “once” is counter-intuitive and we find it to be in-
conclusive. Estimation of the reflectance in one-shot leads
to higher accuracy in logRMSE of the reflectance estimate.
The reason why we still employ the iterative reflectance es-
timation is that we empirically found that the training and
inference were more robust with this choice (also seen in
the slight drop in logRMSE of illumination estimates), es-
pecially for real data. We believe this discrepancy from
intuition and empirical test, manifesting particularly in lo-
gRMSE also reflects the difficulty of evaluating the “good-
ness” of a network for a generative task. We plan to further
study this in more detail.

H. Stochastic Behavior
We analyze the stochastic variability of our method. DRM-
Net seamlessly integrates stochasticity in the inverse ren-
dering process via a reverse diffusion process on the addi-
tive Gaussian observation noise of radiometric image for-
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Figure 4. Qualitative results for the DeLight-Net dataset set [27]. In comparison with iBRDF [14] and DeLight-Net [27], DRMNet achieves
qualitatively natural estimation for illumination and reflectance.
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Figure 5. Results of multiple runs of DRMNet on the same input image. The left column shows the observed reflectance maps, and the
right columns show the estimated samples of illumination (left) and reflectance (right) for each observation. See text for details.

mation. This enables estimation of illumination faithful to
the observation with stochastic variability without separate
sampling. Figure 5 shows the results of estimating the illu-
mination and reflectance multiple times for the same input
images from a set of input images under different illumina-
tion and of objects with different surface roughnesses. For
the same observed reflectance map, a variation of illumina-
tion environments are estimated and their variance is large
for dull reflectance closer to Lambertian and decreases for
more specular reflectance centered around the ground truth.

The larger the surface roughness, the wider-band of high-
frequency of illumination are attenuated which is accurately
reflected in these results. Note how well the recovered re-
flectance maps preserve the overall structure of the illumi-
nation up to the necessary frequencies—it respects the ob-
servation as much as it needs to. This is in sharp contrast to
other methods that completely hallucinate an environment
from noise [49]. The reflectance estimates vary accord-
ingly which are consistent with the observed reflectance
map when combined with the corresponding illumination



illumination reflectance
logRMSE↓ SSIM↑ LPIPS↓ logRMSE↓

w/o Ψ(k) 2.87 0.42 0.54 0.29
w/o L

(K)
r 2.50 0.40 0.57 0.25

once 2.45 0.46 0.51 0.21
full model 2.41 0.46 0.51 0.25

Table 1. Ablation studies of DRMNet. The full model achieves
the highest accuracy, confirming the importance of principled joint
estimation of illumination and reflectance with reference to the ob-
served reflectance map realized through interdependent condition-
ing within DRMNet.

estimates. These results clearly show that DRMNet canoni-
cally solves stochastic inverse rendering while capturing the
ambiguity between the illumination and reflectance.
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