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Supplementary Material

In the supplementary material, we provide more details
and experiments.
• Sec. 8: implementation details for the conducted experi-

ments.
• Sec. 9: related works for lidar-based 3D-OD.
• Sec. 10: further experiments concerning the location do-

main gap. This includes the effects of the voxel size, the
impact of various anchor sizes, the optimization proce-
dure, and single-model-multiclass experiments.

• Sec. 11: further experiments on the effect of augmenta-
tions on VOTR-TSD and SECOND.

• Sec. 12: Analysis of True Positives, False Positives and
False Negatives per model and dataset

• Sec. 13 We report the results of multiple runs on two
benchmarks.

• Sec. 14: Analysis of Recall at various overlaps and on
different benchmarks.

8. Implementation details
For all experiments, we have used the OpenPCDet repos-
itory [49] and the official implementation of VOTR-
TSD [33]. For all models, we use a batchsize of 8 to fit
on our GPUs. To study the isolated effects of the architec-
tural design choices, voxel encoding, and anchor size, we
train the models without GT-Sampling.

9. Related Works: 3D Object Detection
Lidar-based 3D Object Detection can be divided into three
groups: point-based, range image-based, and voxel-based.
Point-based methods [41, 44, 61] extract 3D structural fea-
tures from the raw points directly using permutation invari-
ant feature extractors like Pointnet [39, 40]. Range im-
age detectors project the pointcloud onto a 2D plane us-
ing spherical projection and employ 2D CNNs for detec-
tion [1, 15, 48]. Voxel-based methods divide the point-
cloud into regular voxels and encode the points inside the
voxels using point operations; then, they employ 3D and
2D backbones to generate 3D boxes. VoxelNet [69] is
a seminal work that implements 3D convolutions on the
pointclouds. SECOND [57] is a first-stage detector that
introduces 3D sparse convolutions to boost the efficiency
of 3D backbones. CIA-SSD [67] and SE-SSD [68] both
build upon SECOND: CIA-SSD adds IoU prediction to
the total loss and uses the predicted IoU values to correct
classification scores prior to Non-Maximum Suppression
(NMS), while SE-SSD employs a teacher-student frame-
work with diverse shape augmentation strategies to boost
the network’s capacity of detecting different object shapes.

Model Voxel Size Waymo W → K W → N

PVRCNN

[0.1, 0.1, 0.125] 62.95 16.25 18.81
[0.1, 0.1, 0.15] 62.60 16.41 18.69
[0.1, 0.1, 0.2] 62.41 16.33 19.51
[0.1, 0.1, 0.25] 62.32 15.94 19.83

VOTR-TSD

[0.1, 0.1, 0.125] 64.69 16.97 19.85
[0.1, 0.1, 0.15] 65.20 14.46 21.66
[0.1, 0.1, 0.2] 64.09 15.35 20.59
[0.1, 0.1, 0.25] 64.43 16.86 20.43

Table 8. Impact of the voxel size on the out-of-domain perfor-
mance across different locations. The Car 3D-AP is reported for
PVRCNN and VOTR-TSD.

PointPillars [26] encodes the pointcloud into bird’s eye view
(BEV) features and uses a 2D network on this representa-
tion. Centerformer [70] is a one-stage anchorless detector
that leverages a DETR [5] transformer in its detection head.
There have also been many two-stage approaches that ex-
ploit voxel operations using 3D convolutions in the back-
bone like [12, 34, 45, 46] or 3D transformers like [16, 35].
PV-RCNN [45], Pyramid-RCNN [34] and VOTR-TSD [35]
use point features in the detector to refine the proposals,
while VoxelRCNN uses pure voxel-level features eliminat-
ing the substantial computational overhead of point-level
features. CenterPoint [63] presents an anchorless two-stage
detector. BtcDet [56] predicts objects’ occupancy in the
occluded areas and leverages the occupancy to refine the
proposals. M3DETR [19] extracts features from different
representations (voxels, points, BEV) and computes the re-
lationships between these features using transformers be-
fore using standard detection heads. In this work, we fo-
cus on voxel-based methods since they are getting increas-
ingly more attention and have demonstrated high perfor-
mance on standard detection benchmarks like KITTI [17]
and Waymo [47]. Moreover, works on domain adaptation
typically employ voxel-based methods, which motivates a
closer inspection of these frameworks.

10. Location Domain Gap: Further Experi-
ments

Voxel Size. In Tab. 8, we explore the effect of the voxel
size on performance across multiple geographical locations.
No significant effect is observed on W→K. This can be at-
tributed to the primary domain shift type being the object
size rather than point sparsity, which renders the anchor size
the primary performance driver at test time. However, on
W→N, some performance gain is observed when choosing
a higher voxel height, as NuScenes has a lower resolution



than Waymo.

Models Car Ped Cyc
PointRCNN 5.04 / 38.15 28.22 / 31.76 0 / 0
PointPillars 12.75 / 66.27 48.34 / 49.47 34.9 / 38.51
Second 9.91 / 65.71 41.39 / 46.09 22.74 / 25.37
VoxelRCNN 20.09 / 59.70 55.33 / 59.82 34.81 / 40.79
VOTR-VoxelRCNNhead 21.34 / 55.91 29.96 / 28.09 1.63 / 3.55
PVRCNN 16.61 / 55.99 50.22 / 56.31 34.09 / 34.02
VOTR-TSD 15.75 / 59.39 46.19 / 48.11 39.28 / 46.82

Table 9. Benchmarking anchor-based architectures on W→K. We
report the performance before and after anchor optimization for all
classes and denote a consistent improvement for all models.

Anchor Size BEV / 3D AP
3.9 1.6 1.56 52.80 / 11.05
3.8 1.6 1.56 61.61 / 16.24
3.7 1.6 1.56 66.17 / 21.58
3.6 1.6 1.56 68.76 / 24.63
3.5 1.6 1.56 68.90 / 23.70
3.4 1.6 1.56 68.02 / 20.55
3.6 1.5 1.56 79.26 / 49.86
3.6 1.4 1.56 82.11 / 63.49
3.6 1.3 1.56 82.50 / 65.03
3.6 1.2 1.56 80.38 / 60.18
3.6 1.3 1.5 81.38 / 68.19
3.6 1.3 1.4 80.45 / 58.01
3.6 1.3 1.6 82.53 / 60.88

Table 10. Illustration of the anchor optimization procedure on the
SECOND model on Waymo→KITTI. The first row denotes the
default training and testing anchor size.

Multiclass Experiments. In Tab. 9, we benchmark all
anchor-based architectures on the W→K benchmark, re-
porting the 3D-AP for all classes. The results show an in-
crease in performance for all models across all classes when
tuning the test-time anchor size. This is more pronounced
in cars and cyclists than pedestrians, as these classes exhibit
a more significant change in size across datasets than pedes-
trians. Note the results of the class car are slightly different
from Tab. 5, where all models were trained only on the class
car.
Anchor Size Optimization Procedure. The anchor size
optimization procedure is shown in Tab. 10 on the SEC-
OND model for Waymo → KITTI. We adopt a greedy-
like optimization approach, which involves altering a sin-
gle size dimension while maintaining the others constant.
Subsequently, the dimension that improves the BEV/3D-
AP the most is fixed, and the process is repeated for the
next dimension until all three dimensions have been opti-
mized. Our findings reveal a notable relationship between
the length and width of the anchors and the overall detec-
tion efficacy in this specific benchmark. Notably, adjust-
ments to the width dimension have a pronounced effect on

Test-time Anchor NuScenes→Waymo
Training [3.9, 1.6, 1.56] 17.31 / 14.94
Best performing [3.8, 1.6 , 1.4] 18.13 / 15.49

Training [4.2, 2.0, 1.6] 18.03 / 15.39
Best performing [4.2, 2.1, 1.50] 22.07 / 18.86

Training [4.80, 2.11, 1.79] 21.01 / 17.96
Best performing [4.60, 2.11 , 1.70] 22.15 / 18.93

Table 11. Anchor Study on NuScenes→Waymo. LEVEL 1 and
LEVEL 2 AP are reported for the class Vehicle.

the OOD performance. This observation suggests that ob-
jects in the KITTI dataset are generally narrower compared
to those in Waymo, implying that smaller anchor widths are
more suitable for the KITTI objects. However, the determi-
nation of which dimension is most crucial varies depending
on the size characteristics of objects in the source and target
datasets. For test-time applications, we select the optimal
anchor size, which is emphasized in bold in the table.

Tuning the Anchor Size on Target Datasets with Larger
Objects. In Tab. 11, we report the effect of changing the
anchor size of SECOND on N→W, where the target objects
in this setting are larger than the source objects. We find
that the best-performing anchors are still smaller than the
training anchors. A larger training anchor can provide bet-
ter source-only performance than smaller training anchors
and allows for an even higher performance at test-time after
tuning the anchor size. This shows the importance of choos-
ing a large training anchor size, which sets a wide enough
spatial prior for object detection at different sizes. Never-
theless, the enhancements in this domain gap are not as sig-
nificant as those observed in the transition from Waymo to
KITTI. This is primarily because the average object sizes
in both datasets are close, and the primary difference in the
domain gap is attributed to the resolution and vertical field-
of-view.

11. Sensor Domain Gap: Further Experiments

In Tab. 12, we investigate the effect of augmentations
on VOTR-TSD and SECOND. We add PVRCNN from
Tab. 6 for comparison purposes. We include the oracle
and two domain adaptation models ST3D [59] and Beam-
Distillation [54]. We notice that foreground augmenta-
tions (SA, GT-Sampling, Mixed GT-Sampling) can pro-
vide substantial improvements in some cases but are model-
dependent and class-dependent. On the other hand, line
downsampling proves to provide the most consistent and
highest improvement on this domain gap on all benchmarks
and models. It is able to come close to and even sometimes
outperform the two presented DA models, highlighting the
importance of augmentations during source-domain train-
ing.



Model Augmentation W→N K64 → K32 K64 → K16
Car Ped Cyc Car Ped Cyc Car Ped Cyc

SECOND

No Aug 17.84 4.44 0.22 73.50 41.11 39.10 50.71 16.63 17.58
GT-Sampling 17.86 5.62 3.68 73.50 38.96 51.04 55.01 9.69 22.87

Mixed GT-Sampling 17.28 2.36 0.03 83.20 42.80 41.75 48.72 17.43 17.98
Shape Augmentation (SA) 17.23 4.56 0.20 72.01 45.80 43.54 53.07 24.45 21.93
Line Downsampling (LD) 20.92 7.64 0.60 75.37 47.35 53.88 65.30 41.16 37.89

SECOND
ST3D [59] 20.19 5.11 3.35 61.94 - - 52.17 - -

Beam-Distillation [54] 22.86 - - 74.33 - - 65.13 - -
Oracle 30.30 16.79 0.0 76.61 41.43 49.74 68.34 42.96 40.70

PVRCNN

No Aug 20.36 5.79 0.53 77.62 53.96 50.3 54.07 27.13 26.36
GT-Sampling 15.86 5.29 0.0 77.97 47.83 60.54 57.61 14.45 25.44

Mixed GT-Sampling 20.57 7.62 0.0 78.79 55.37 50.74 55.92 23.93 27.23
Shape Augmentation (SA) 20.16 5.73 0.0 78.46 54.98 56.11 59.08 33.74 30.45
Line Downsampling (LD) 23.97 10.57 0.0 82.72 61.28 64.24 71.57 51.64 46.33

PVRCNN
ST3D [59] 22.99 - - - - - - - -

Beam-Distillation [54] 25.63 - - - - - - - -
Oracle 37.85 24.56 1.67 81.45 51.75 61.55 72.71 53.05 49.8

VOTR-TSD

No Aug 21.32 7.0 3.48 76.29 49.78 49.76 55.61 21.71 24.38
GT-Sampling 20.15 8.09 6.34 78.5 41.81 62.13 59.37 19.04 31.25

Mixed GT-Sampling 21.54 8.22 2.41 59.49 38.64 40.68 35.86 20.27 16.82
Shape Augmentation (SA) 20.26 7.15 3.43 75.5 51.81 50.44 57.36 29.21 27.84
Line Downsampling (LD) 24.82 9.41 5.22 80.3 54.81 50.26 69.39 49.32 50.88

Oracle 38.13 22.51 2.43 82.47 50.69 66.08 73.75 53.45 50.69

Table 12. Impact of common and introduced data augmentations on the OOD performance in high-to-low resolution domain gaps. SA and
LD are found to consistently improve the AP on target domains, while GT-Sampling deteriorates pedestrian detection.
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Figure 8. Number of TPs, FPs, and FNs, normalized by the corre-
sponding number of groundtruth annotations.

12. TP/FP/FN Analysis

In Fig. 8, we conduct further analysis, reporting the num-
ber of True Positives (TP), False Positives (FP) and False
Negatives (FN) for each 3D object model on the six studied
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Figure 9. Number of TPs, FPs, and FNs per class across all mod-
els, normalized by the corresponding number of groundtruth an-
notations.

benchmarks. The analysis shows: (1) Going from high-to-
low resolution results in more FN. The number of FN in
K64→K16 is higher than the number of FN in K64→K32.
The FN ratio is also very high on W→N and W→Kr, show-
ing how challenging it is to detect objects when the target
domain is sparser than the source domain. (2) Across dif-
ferent geograohical locations, the number of FPs is high.
This number can be largely mitigated by tuning the an-
chor size on the target data. (3) Some models are very
prone to FP like PointPillars and CenterPoint, which gener-
ate up to 17 FPs for every groundtruth label. (4) Point-based
model PointRCNN fails to detect many objects, resulting in
the largest number of FN among all studied detectors. (5)
The number of FNs among detector shows little variations,
showing there is still work to be done to improve the detec-
tion of objects in sparser target domains. (6) VOTR-TSD



Features Architecture Method K64→K32 (R) N→K (G+R)
Car Ped Cyc Car Ped Cyc

Point MLP PointRCNN 76.8 50.86 59.42 12.14 26.27 0

Voxel Conv PointPillars 72.43 40.47 27.02 0 0 0
Conv Second 74.93 44.65 43.17 8.52 14.9 0.002
Conv VoxelRCNN 80.07 56.55 59.66 8.21 20.25 0
ViT VOTR-VoxelRCNN 80.07 52.01 48.44 21.17 27.63 0.68

Hybrid Conv CenterPoint 72.74 45.42 47.19 9.912 20.69 0.06
Conv PVRCNN Centerhead 71.99 45.43 35.82 26.13 25.26 0.016
Conv PVRCNN 78.12 54.48 52.25 14.42 16.6 0
ViT VOTR-TSD 77.21 48.87 51.68 27.1 26.42 4.12

Table 13. Multiple runs experiments. We train each model five times on each benchmark and report the average per class. Variations across
different runs are found to be small.

shows the smallest number of FPs among the hybrid and
voxel-based methods (PointRCNN has a smaller FP ratio,
but it is likely because it generates fewwer bounding boxes
than the rest of the models, as reflected in the high FN ra-
tio). (7) Adding point features has a different effect on each
backbone: when added to VOTR, point features decrease
the number of FPs (compare VOTR-VoxelRCNN to VOTR-
TSD). When added to 3D CNNs, the number of FPs slightly
increase while FNs slightly decrease.

In Fig. 9, we report the number of TP, FP, and FN for
the three classes across all models and datasets. Clearly,
smaller and rarer classes in the source datasets (cyclists,
pedestrians) suffer mostly from FN. On the other hand, a
very large number of FP cars. While previously mentioned
factors (point sparsity, object size) are mainly the cause
of this discrepancy between classes, the labeling technique
may also vary across datasets. For instance, the Vehicle
class in Waymo includes cars, trucks, and even motorcy-
cles, which is different from all other datasets like KITTI
and NuScenes. This could lead to many FP detections.

13. Statistical Analysis
In Tab. 13, we report the results of multiple runs (5 per
model) on two benchmarks (K64→K32 and N→N). Results
show mall variations across experiments.

14. Recall Analysis
In Tab. 14, We measure the recall of PVRCNN at various
overlaps (0.3, 0.5, and 0.7) in different settings and bench-
marks. First, on W→K, the recall at IoU= 0.3, 0.5 is almost
the same with or without anchor optimization. However,
we notice a large drop in the recall at IoU= 0.7, indicating
the existence of localization errors in this domain gap. The

IoU eval on W→K
w/o Anchor Tuning w/ Anchor Tuning

0.3 0.95 0.95
0.5 0.88 0.91
0.7 0.34 0.61

IoU eval on Kirk
Trained on Waymo Trained on Kirk

0.3 0.78 0.74
0.5 0.72 0.70
0.7 0.51 0.53

IoU eval on K64 w/o Anchor Optimization
Trained on W Trained on N

0.3 0.95 0.44
0.5 0.88 0.39
0.7 0.34 0.17

IoU eval on K64 w/ Anchor Optimization
Trained on W Trained on N

0.3 0.95 0.54
0.5 0.91 0.51
0.7 0.61 0.38

Table 14. Analyis of Recall at multiple IoU for PVRCNN model
on different benchmarks

tuned anchor addresses this problem and boosts the recall to
0.61.

In the second setting, we evaluate on Kirk a PVRCNN
model trained on W and another one on Kirk. While the
recall of the model trained on W is slightly better, the dif-
ference between the two is small. Both models suffer from
many FN (confirmed by Fig. 8), but the model trained on W
has fewer FP than the model trained on Kirk, which explains



the difference in their AP but their similar recall.
In the third and fourth settings, we measure the recall of

PVRCNN on KITTI after training on W and N. The model
trained on N has significantly worse recall values at all over-
laps, showcasing the challenge of training on different res-
olutions and field-of-view. The anchor optimization boosts
the scores, as it addresses the location domain gap. How-
ever, the scores of N are still low due to the presence of the
resolution domain gap.


