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1. Differentiability analysis
Given a smooth surface S , we want to study the differ-

entiability of function:

tS(x) = dS(x) tanh(αdS(x)). (1)

Notice that function dS is differentiable almost everywhere
outside the surface, hence tS is trivially differentiable at
such points and its gradient is given by:

∇tS(x) = ∇dS(x)ϕ(x), (2)

with ϕ(x) = tanh(αdS(x)) + αdS(x)(1 − tanh2(αdS(x))).
However, at the isosurface dS is not differentiable. To show tS dif-
ferentiable at s ∈ S, we consider the partial derivatives expressed
by the limit:

lim
h→0

tS(s+ eih)− tS(s)

h
= lim

h→0

tS(s+ eih)

h
, (3)

where ei is the i-th canonical vector. It follows that dS(s+eih) ≤
|h|. Considering that function tanh is monotonically increasing,
then:

∣∣∣∣ tS(s+ eih)

h

∣∣∣∣ ≤ ∣∣∣∣ |h| tanh(α |h|)
h

∣∣∣∣ = |tanh(α |h|)| h→0−−−→ 0.

(4)
Hence, partial derivatives at the isosurface are null. To fin-

ish the proof, we show that the hyperplane defined by the partial
derivatives at s correctly approximates the function tS , which is
satisfied if the following limit approaches 0:

lim
x→s

|tS(x)− tS(s)−∇tS(s) · (x− s)|
∥x− s∥ = lim

x→s

|tS(x)|
∥x− s∥ . (5)

Similar to the partial derivative calculation, we bound this limit
considering that the distance of every point to the surface must
always be smaller or equal to the euclidean distance between a
point and some surface point, that is dS(x) ≤ ∥x− s∥ for every
s ∈ S. Using this fact in Eq. 5:

|tS(x)|
∥x− s∥ ≤ ∥x− s∥ |tanh(αdS(x))|

∥x− s∥ = |tanh(αdS(x))|
x→s−−−→ 0,

(6)
concluding that function tS is differentiable at the isosurface.

2. Gradient norm
Based on the results from Sec. 1, at points outside the iso-

surface where dS is differentiable, the unsigned distance gradient
norm is unitary: ∥∇dS(x)∥ = 1. This is a standard property of
distance functions. Given that ϕ is always positive away from the
isosurface, the norm of the gradient can be expressed as:

∥∇tS(x)∥ = ∥∇dS(x)∥ |ϕ(x)| = ϕ(x). (7)

As previously discussed, at the isosurface the gradient ∇tS(s) =
0, then its norm is null. These results explain the choice for the
Eikonal problem and Neumann boundary condition expressed in
the paper.

3. Extended ablation and results
As mentioned in the paper, we experimented with different val-

ues for parameter α (Tab. 1). As α gets larger, function tS closely
approximates dS , increasing the errors probably due to the non-
differentiability at the isosurface. Smaller α values enlarge the
quadratic strip near the isosurface, which is harder to supervise
effectively and hinders the performance of MC.

α L1CD ↓L2CD ↓ NC ↓
1× 100 10.7 0.038 0.094
1× 101 9.23 0.025 0.033
1× 102 9.14 0.027 0.020
1× 103 9.52 0.038 0.023
1× 104 9.69 0.029 0.028

Table 1. L1, L2 Chamfer
distance and Normal Con-
sistency (NC) metrics for
different values of parame-
ter α.

We also show additional quali-
tative comparisons for three differ-
ent experiments showcased in the
paper. In Fig. 1 we demonstrate
the effect of the maximum curva-
ture field alignment loss on two re-
constructed examples. In Fig. 2
we compare closed surface repre-
sentations trained on the ShapeNet
Cars data set [3] pre-processed by
[8] to be closed. In Fig. 3 we show
how our field’s normal directions
and principal curvatures are useful
in the context of tracing rendering
algorithms and light reflection models. Finally, in Fig. 4 we fur-
ther compare the different reconstruction algorithms used through-
out this work. All reconstructions were performed with the pa-
rameters reported in the paper (architecture, parameter count, loss
weights, and training scheme).
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Figure 1. Ablation study. The first column shows the reconstruction of the network trained with the full loss. The second column shows the
reconstruction without the maximum curvature field alignment term, resulting in less detail at high curvature regions such as Armadillo’s
mouth and Bimba’s hair bun.
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Figure 2. Reconstructions on closed [8] ShapeNet cars [3] for DeepSDF [5], SIREN [6], CAP-UDF [9] and DUDF. We additionally show
sphere tracing renderings of our learned fields without the marching cubes reconstruction step.
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Figure 3. Sphere tracing renderings of an open surface (Max Planck model is open at the bottom) under three different light sources. We
used surface normals for the Blinn-phong reflectance model [2]. For the Ward reflectance model [7] we used both, normals and principal
curvature directions computed from DUDF’s differentiable fields.
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Figure 4. Reconstructions on DeepFashion [10] and Multi-garment [1] data sets for the three different reconstruction methods explored in
our work: MC1 [9], MC2 [4], and sphere tracing.
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