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Supplementary Material

Abstract

This document serves as supplementary material for ”Ac-
tive Open-Vocabulary Recognition: Let Intelligent Moving
Mitigate CLIP Limitations”. It begins with a detailed exam-
ination of the dataset collected to check the limitations of
CLIP models. This is followed by an extensive presentation
of investigation results for various CLIP models, which could
not be fully included in the main paper due to the page con-
straint. The material then outlines the training procedures
and hyperparameters employed during our training. Lastly,
it provides a thorough quantitative and qualitative analysis
of the results, alongside relevant statistics, underscoring the
efficacy of our proposed method.

1. Investigation Dataset

ShapeNet dataset. We select the training split of the
ShapeNetCore dataset [1] for our investigation. This split
contains approximately 41500 CAD models, with the class
distribution illustrated in Figure 1.

For each object, a 12 x 12 viewing grid is uniformly
sampled at intervals of 30 degrees. We set the resolution
of each view to 320 x 320 pixels. In testing various CLIP
models [2, 6], we utilize their respective image preprocessing
methods prior to input into the model.

Habitat dataset. We select objects from 25 different classes
within 145 semantically annotated scenes from the Habitat
HM3D dataset [4], totaling 4659 objects. The distribution
of these selected object categories is illustrated in Figure 2.

For each target object, the agent is initially positioned
at a random location within a 3-meter radius of the target.
Subsequently, the agent is rotated in 30-degree increments
around the target, maintaining a constant distance, on the
same horizontal plane. This procedure allows for a max-
imum of 12 unique viewpoints for each object. However,
due to the natural occurrence of occlusions in indoor en-
vironments, viewpoints where the target is not visible are
discarded.

2. Result of CLIP on Varying Viewpoints

This section extends the results presented in Section 3.2 of
our main paper, providing additional insights. Specifically,
we analyze the accuracy of different viewpoints using the
collected ShapeNet dataset, as depicted in Figures 3 and
4. For each class, we present one example testing sample

accompanied by a heatmap that illustrates the accuracy for
each viewpoint. It is important to note that the accuracy for
each view represents the average accuracy across all testing
samples. These results are obtained using the ViT-B/32
architecture.

A key observation from our study is that the performance
of CLIP is notably influenced by changes in viewpoints. In
other words, certain specific viewpoints are more appropriate
for object recognition compared to other. This phenomenon
is in line with human perception, wherein we tend to recog-
nize objects from their most distinctive views. In the context
of embodied perception, the environment is often highly un-
constrained, and the setup for capturing images by an agent
is typically not within human control. This means the ini-
tial viewpoint for on-agent recognition modules might be
undesired. Our findings suggest that when deploying CLIP
models in embodied agents, there is a critical need to actively
seek novel and informative observations, rather than relying
passively on a single visual input.

Additionally, we present a comparative analysis of the
mean, median, and maximum accuracy across different CLIP
architectures and viewpoints in Figure 5. Specifically, we an-
alyze four distinct CLIP architectures: two based on Vision
Transformers (ViT-B/32, ViT-L/14), one ResNet-50 model
(RN50x64) [2], and the recent MetaCLIP model [6]. This
analysis reveals variations in performance among different
CLIP models. Moreover, it is evident that all examined CLIP
models demonstrate a preference for specific viewpoints,
which underscores the significance of viewpoint selection in
embodied Al systems. We also provide the result of testing
four models on the collected Habitat dataset, which is shown
in Figure 6.

3. Result of CLIP on Occlusions

In this section, we extend the results presented in Sec-
tion 3.3 of our main paper. We conduct a comprehensive
study of various CLIP models, namely, ViT-B/32, ViT-L/14,
RN50x64 [2], and MetaCLIP [6], focusing on their resilience
to randomly occurring occlusions. Specifically, we examine
occlusion levels set at 20%, 35%, and 50%. The findings are
illustrated in Figure 7.

We observe a noticeable degradation in the performance
of CLIP models as the level of occlusion increases. Given
that occlusions are common in embodied perception scenar-
i0s, it appears necessary to mitigate them by actively altering
viewpoints, particularly when deploying CLIP models in
embodied agents.
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Figure 1. Instances for each category in the ShapeNet dataset for investigation.
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Figure 2. Instances for each category in the collected Habitat dataset for investigation. The ch_of_dr and gym_eq are short for ’chest of

drawers” and ”gym equipment”, respectively.

4. Implementation Details

In this section, we discuss the implementation details of our
proposed active open-vocabulary recognition agent.
Inputs. For CLIP models, they require the computation
of cosine similarity between text and visual embeddings.
Consequently, descriptive texts for potential categories are
indispensable at both the training and testing stages. We uti-
lize a format comprising ’article + noun’ for text descriptions
of each class, such as ’a table’ or ’a chair’.

Regarding visual inputs, the original resolution of the
ShapeNet dataset is set at 320 x 320, in contrast to 800 x 640
for the Habitat dataset. For the Habitat dataset, recognition
focus solely on the cropped window of the target, based on
the presumption that the agent has pre-existing knowledge
of the target’s 2D position in the current frame and is tasked
with classification. In our Habitat dataset experiments, the
ground-truth tracking box is directly employed. For real-
world applications, the agent may utilize a class-agnostic
visual tracker [5], or employ a depth sensor to map the target
from the initial frame to the current frame.

Additionally, for the separate policy image encoder, vi-
sual inputs are resized to 224 x 224 for both datasets.
Architecture. We primarily focus on detailing the pro-
posed evidence integration and policy components. The
evidence integration component utilizes a self-attention mod-
ule, which assigns weights to frames based on their im-
portance. Specifically, the self-attention module receives
one-dimensional features, ¢, derived from concatenating

. L. t .
three key elements: inter-concept similarity s;" "', inter-

frame similarity s, and proprioceptive knowledge p;.
For 5;""™, we compute the top-k similarity measure be-
tween the image feature embeddings and the corresponding
text embeddings. Throughout our experiments, we set the
value of k to 10. The final integrated feature for recognition
is then calculated as a weighted sum of all collected CLIP

features, with the weights determined by the module.

Regarding the policy component, it features a straight-
forward, three-layer convolutional network as the image
encoder. The policy employs a single-layer GRU for inte-
grating temporal information. This is further complemented
by two distinct linear layers, serving as the actor and critic
respectively.

Training. Our proposed agent comprises two trainable com-
ponents: the evidence integration and the policy modules.
During training, these modules are jointly optimized. This
approach is chosen as the reward for the policy part is de-
rived on predictions from individual frames rather than on
integrated predictions. This strategy is free from any adverse
interactions between the two modules in the initial stages of
training. In our experiments, the batch sizes are set to 16 for
the ShapeNet dataset and 30 for the Habitat dataset.

For optimizing the integration part, we utilize Stochastic
Gradient Descent (SGD) with a learning rate of 107°, a
momentum factor of 0.9, and a weight decay parameter
set to 0.0005. Conversely, the policy module is optimized
using the Proximal Policy Optimization (PPO) algorithm [3].
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Figure 3. Recognition accuracy of different viewpoints on the most common sixteen categories (part 1).

Here, the Adam optimizer is employed with a learning rate
of 2.5x 107" and an epsilon value of 5x 10>, Additionally,
we set the discount factor vy to 0.99 for computing returns.

Moreover, the training for the proposed agent to achieve

convergence are approximately 24 hours for the ShapeNet
dataset and 30 hours for the Habitat dataset, respectively.
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Figure 4. Recognition accuracy of different viewpoints on the most common sixteen categories (part 2).

5. Quantitative Results and Analysis 5.1. Categorical Accuracy

Figure 8 illustrates the recognition accuracy across various
In this section, we provides more experimental analysis of object categories within the ShapeNet dataset. Results are
the proposed active open-vocabulary recognition method. reported for two distinct class splits, namely, the 10/45/55
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(d) MetaCLIP [6]

Figure 5. Performance of various CLIP models on the collected ShapeNet dataset: reporting mean, median, and maximum accuracy across

all viewpoints for each category.

telligent movement policy would try to reach views that the

and the 20/35/55 splits. As the proposed agent engages in

equipped CLIP model could correctly classify the target. In

active perception of the environment, an improvement in

other words, the visiting frequencies for views that could be

recognition accuracy is observed across all classes. This un-

recognized should be more frequently visited. The visiting

derscores the efficacy of the proposed method in effectively

managing both base and novel unseen classes.

frequency is shown on the right of each example in Figure 9,

and we normalize the frequency to [0, 100] for each class.
It is worth noting that, for each recognition episode, the
starting viewpoint is randomly sampled among all 12 x 12

5.2. View Visiting Frequency

We provide two examples of view visiting frequencies in

viewpoints, meaning the agent needs to execute different

actions to reach informative viewpoints.

Figure 9. To calculate the view visiting frequency, we record

the location of our agent at each steps during recognizing
samples belonging to a specific category. Intuitively, a in-
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Figure 6. Performance of CLIP models on the collected Habitat dataset. This table illustrates changes in performance based on different
viewpoints. The comparison is conducted on a per-object basis, i.e., comparing the accuracy of a randomly chosen viewpoint against that of
the best-performing viewpoint. The average performance across all test samples within each category is then calculated.

5.3. Ablation Study on ¢,

We test our integration module by selectively masking com-
ponents in ¢q;. The experiment is conducted using the
ShapeNet with 10 base classes. To enhance the compa-
rability, we introduce the hit rate metric. The hit rate metric
computes the percentage of episodes where the highest o
corresponds to a correct prediction. A higher hit rate indi-
cates more effective o prediction. We observe that our in-
tegration module exhibits higher sensitivity to s, which
measures the temporal similarity between the current frame
and all preceding frames. Note that the behavior of the policy
remains consistent.

Table 1. The ablation study on the proposed integration module by
selectively masking components in g.

Base classes | Novel classes | Open classes [[ Hit rate

Ours 60.6 | 813 | 36.6 | 55.1 | 533 | 734 655
wio s 7593 | 809 | 355 | 550 | 52.1 | 73.0 60.2
wio s™™ | 589 | 80.1 | 343 | 538 | 512 | 722 582
wio py 595 | 81.0 | 357 | 550 | 523 | 730 622

6. Qualitative Results

We present additional qualitative results of the proposed
agent, demonstrated through a video encompassing both
datasets. Initially, we delve into the limitations inherent to
CLIP models, particularly in the context of embodied per-
ception scenarios. Subsequent to this, we showcase testing
episodes of our proposed methodology. During each testing
episode on the ShapeNet dataset, the agent’s current loca-
tion, next movement, and its predictions are illustrated. For
comparative analysis, baseline CLIP predictions are also

provided. This comparison allows for an observation of
the enhancements in our proposed active open-vocabulary
recognition agent, as it progresses through successive steps.
The demonstrative results on the Habitat dataset are also
included.
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Figure 7. Performance of various CLIP models on the adversarial inference from different levels of occlusion (20%, 35%, 50%). The

comparison is conducted using the collected ShapeNet dataset. Generally, mean accuracy decreases as the level of occlusion increases.
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Figure 8. The recognition accuracy of each object category on the ShapeNet dataset. Base classes are denoted in blue, while novel classes
are marked in red. For each class, the table presents a side-by-side comparison of the accuracy at the initial step, i.e., the baseline CLIP
performance (light color), and the accuracy achieved by our agent at the final step (standard color).
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Figure 9. Visiting frequency of our agent across two example classes during the testing phase. This frequency is depicted as a heatmap,
positioned to the right of each sub-figure. During testing, the starting position is randomly sampled among all viewpoints. In other words, the
difference of visiting frequencies is brought by the intelligent movements. It is important to note that the visiting frequencies are normalized
on a class-wise basis to facilitate a more distinct comparison. Additionally, a testing sample is included alongside the baseline performance
obtained from CLIP, serving as the reference.
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