
Appendix of Adaptive Slot Attention: Object Discovery with Dynamic Slot Number

1. More Implementation Details for MOVi-C/E
and COCO

Vision backbones. We utilize the Vision Transformer back-
bone and leverage the pre-trained DINO weights available
in the timm [8] library. Our specific configuration entails
using ViT-B/16, which consists of 12 Transformer blocks.
These blocks have a token dimensionality of 768, with a
head number of 12 and a patch size of 16. In our pipeline,
we take the output of the final block as the input of slot at-
tention module and the reconstruction target.
Slot Attention. We adopt the slot attention bottleneck
methodology based on the original work [4] for our im-
plementation. The slot initialization process involves sam-
pling from a shared learnable normal distribution N (µ,Σ).
Throughout all the experiments, we iterate the slot attention
mechanism with 3 steps. The slot dimension is set to 128
for MOVi-C/E and 256 for COCO datasets. For the feed-
forward network in Slot Attention, we utilize a two-layer
MLP (Multi-Layer Perceptron). The hidden dimension of
this MLP is set to 4 times the slot dimension.
Light Weight Network for Probability Prediction. We
utilize a two-layer MLP for the probability prediction. The
hidden dimension of this MLP is set to 4 times the slot di-
mension, and the output dimension is set to 2.
Decoder. We utilize a four-layer MLP with ReLU activa-
tions in our approach. The output dimensionality of the
MLP is Dfeat + 1, where Dfeat represents the dimension
of the feature, and the last dimension is specifically allo-
cated for the alpha mask. The MLP’s hidden layer sizes
differ based on the dataset used. For the MOVi datasets, we
employ hidden layer sizes of 1024. On the other hand, for
COCO, we utilize hidden layer sizes of 2048.
Optimizer. In our main experiments, we train our models
for 500k steps. Our model is initialized from a fixed Kmax

slot model trained for 200k steps. To optimize the model’s
parameters, we employ the Adam optimizer with a learning
rate of 4e − 4. The β0 and β1 parameters are set to their
default values β0 = 0.9, β1 = 0.999. For the ablation stud-
ies such as the necessity of Gumbel-Softmax and designs of
masked slot decoders, we train our models for 200k steps.

To enhance the learning process, we incorporate a learn-
ing rate decay schedule with a linear learning rate warm-up
of 10k steps. The learning rate follows an exponentially de-

caying pattern, with a decay half-life of 100k steps. Further-
more, we apply gradient norm clipping, limiting it to a max-
imum of 1.0, which aids in stabilizing the training proce-
dure. The training of the models takes place on 8 NVIDIA
T4 GPUs, with a local batch size of 8.

2. More Implementation Details for CLEVR10
For the experiment on toy dataset CLEVR10, we do pixel-
level reconstruction instead of feature reconstruction. We
utilized the CNN feature encoder and boardcast decoder in
[4]. We set the slot dimension to 64, and set the hidden
dimension to 128 for the feed-forward network in slot at-
tention. The other setting closely follow the experiments on
MOVi-C/E and COCO.

3. Detailed Results on Toy Dataset
In Tab. 1, we quantitatively compare our model with sev-
eral fixed-slot models on the toy dataset CLEVR10 under
pixel reconstruction setting. Moreover, we provide quali-
tative comparison among our model, 6-slot model, and 11-
slot model in Fig. 1. The 11-slot model often assign one or
more slots to represent the background, while 6-slot model
can not properly segment all objects when the image have
more than 6 objects.

Our model differs significantly from the 11-slot model
in terms of handling the background, as observed from the
visualizations. In the case of the 11-slot model, when the
number of objects of an image is small, the 11-slot model
tends to divide the background into several slots. However,
this division does not segment the background into several
regions. Instead, the segmentation of background is very
even in terms of light and shadow.

On the contrary, our model takes a different approach
of not utilizing a fixed background slot. Instead, it intel-
ligently merge the background regions to the nearest fore-
ground objects. It is reflected in the visualization that the
shadow (which corresponds to background) around the ob-
ject is much darker in our proposed model than the fixed
slot model. The visualizations demonstrate that our model
consistently outputs an appropriate number of slots for each
image. In order to evaluate the accuracy of our model in de-
termining the number of objects, we illustrate the heatmap
of confusion matrix of segmentation number and the slot
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Figure 1. Visualization of instance-level adaptive slot number selection by per-slot segmentation on CLEVR10. We compare our model
and two fixed-slot models. The results show that our model can select the slot number for each instance adaptively.

distribution of the models in Fig. 2. Our models exhibit
a prediction distribution that almost perfectly aligns with
the ground truth. Additionally, the heatmap revealed an
excellent diagonal relationship, indicating that our method
can roughly resolves the challenge of unsupervised object
counting on CLEVR10. The diagonal of the heatmap re-
veals the instance-level adaptability of our model.

As for the metrics, our model achieves comparable ob-
ject grouping results to both the 11-slot and 9-slot models.
However, when it comes to localization, our model exhibits
slightly lower performance. Nonetheless, we would like to
suggest that this discrepancy can be attributed to the distinct
approach we take in handling the background. Our model
tends to merge the shadows around objects with the fore-
ground, which, in turn, results in slightly lower IoU scores
for the object masks predicted by our model. Consequently,
this leads to drops in metrics such as mBO and CorLoC.

4. More Analysis on COCO

Similarly, we present the heatmap of the confusion ma-
trix of segmentation number and the slot distribution of the
models in Figure 3. However, It is worth noting that the
COCO dataset has incomplete annotations, which means
that not all objects have been annotated. In this case, we
make our method solely focus on predictions related to the
foreground. In other words, we only consider slots whose
masks intersect with foreground objects. Besides, we limit
our analysis to images that contain no more than 10 ob-
jects, since a significant majority of COCO images contain
fewer than 10 objects. These particular images play a cru-
cial role in determining an appropriate value for the fixed
slot number, as 6 slot number reached the best results on
COCO. Among the three models, our model shows better
correlation between the ground truth object number and the
predicted slot number. In contrast, the fixed-slot models fail



Figure 2. Comparison between ground truth and predicted object numbers. Heatmap of confusion matrix and slot distribution of our
models and two fixed slot models on CLEVR10. For heatmap, y-axis corresponds to the number of objects of ground truth, and x-axis
is the predicted object number by models. Due to imbalanced ground truth object numbers, we normalized the row and visualize the
percentage. The brighter the grid, the higher the percentage. The slot distribution graph shows the probability density of grounded and
predicted object numbers. The results show that our model can choose the slot number almost perfectly on CLEVR10.

Table 1. Results on CLEVR10 dataset.

Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

3 59.00 60.85 93.17 72.22 10.33 0.08 70.09 66.36 66.41
6 90.77 89.26 98.13 93.08 19.35 19.45 91.81 92.32 92.34
9 97.59 97.86 98.55 98.14 26.45 45.72 97.81 97.39 97.40

11 98.06 98.77 98.35 98.51 27.39 47.15 98.27 97.90 97.90
Ours 97.65 98.19 98.36 98.21 22.51 37.00 98.03 97.50 97.51

to exhibit this diagonal pattern, further highlighting the ef-
ficacy of our approach.

As for the distribution of total slot number, all three
models’ predictions deviate from the ground truth. How-
ever, our model demonstrates the closest approximation to
the ground truth distributions. This is substantiated by the
visual examples presented in Figure 8, where our model
showcases its ability to generate semantically coherent and
meaningful segmentations. Notably, our model demon-
strates adaptability by adjusting the slot number according
to the complexity of the images, thereby further enhancing
the quality of its predictions.

Figure 8 provides valuable insights into the reasons be-
hind the deviations of the distributions from the ground
truth. Let’s consider the first column of Fig. 8, where our
model demonstrates successful segmentation of the raw im-
age into distinct regions, including the head of the girl, the
T-shirts, the glove, and the background. The separation of
the T-shirt and the head seems to be an over-segmentation
compared to annotation, which may lead to low metric
score. However, each segmented region exhibits semantic
coherence and is still visually reasonable.

Real-world datasets often encompass complex part-
whole hierarchies within objects. Without the availability
of human annotations, accurately segmenting objects into

the expected part-whole hierarchy becomes extremely chal-
lenging. Since many objects consist of multiple parts, just
like the human body, it is expected that our model’s predic-
tions will slightly surpass the ground truth in terms of the
number of slots. As a result, our model’s prediction will be
slightly more than ground truth.

5. Ablation
We conduct a series of ablation studies on MOVi-E dataset
to investigate the components and design choices of our
method.

Comparison of three design choices of masked slot
decoder. In our main paper, we proposed several design
choices of the masked slot decoder, and we focused on
the zero mask variant. In Tab. 2 and Fig. 4, we compare
the three variants in both quantitative and qualitative ways.
The results show that our zero mask method effectively im-
proves most metrics compared to the original slot attention
model with 24 slots. However, in zero slot and learnable
slot strategy, simply changing the manipulation on the mask
to the manipulation on the slot makes the model collapse.
Both zero slot and learnable slot strategy tend to group all
pixels together instead of making a segmentation. If we
do not explicitly remove the effect of the dropped slot by
setting their alpha masks to zero, the zero/learnable slot



Figure 3. Comparison between ground truth and predicted object numbers. Heatmap of confusion matrix and slot distribution of our
models and two fixed slot models on COCO. The sole distinction is that we consider the ground truth masks and predicted masks on the
foreground. Our model outperforms two fixed slot models for slot number selection.

will still contribute to the reconstruction. Some instance-
irrelated information will be introduced and may mislead
the slot selection. As a result, zero/learnable slot tend to
group all pixels together.

The Necessity of Gumbel Softmax. In the main paper,
we utilized the hard zero-one mask:

Z = GumbelSoftmax(π):,1. (1)

To verify the necessity of Gumbel-Softmax, we provide ex-
periments that keep the same masked slot decoder but re-
place the hard mask with a soft mask without Gumbel Soft-
max:

Zsoft = π:,1. (2)

The results are displayed in Fig. 5 and Tab. 3. Notably, with-
out Gumbel Softmax, although the model provides slightly
better mBO, all the other metrics are kept at the same level
as the original slot attention model. Moreover, from the vi-
sualization, without Gumbel Softmax we can not achieve
adaptive instance-level slot selection but produce segmen-
tation with Kmax = 24 masks. This failure is due to the
landscape of the soft mask. Consider the following case:

π1,1 = π2,1 = · · · = πK,1, and πK,1 → 0. (3)

The regularization term approach zero Lreg → 0, and
m̃i ≈ mi. Therefore, our method is reduced to ordinary
slot attention reconstruction. This simple case shows that
without Gumbel Softmax, we can not easily suppress the
information of unselected slots, leading to the failure of slot
selection. With Gumbel Softmax, when πi,1 → 0, Zi = 0
and m̃i = 0 happens with higher probability. The informa-
tion of Si will be totally removed. This difference leads to
our success.

Influence of λ. We test how the regularization strength
λ influences the results on MOVi-E. We compare 7 possi-
ble values of λ, ranging from 1e− 2 to 1 in Tab. 4, keeping
other parameters unchanged compared with the main exper-
iments. Generally, larger regularization prefers fewer slots

left and grouping more patches. Recall and λ exhibit a pos-
itive correlation, while Precision and λ exhibit a negative
correlation. For foreground grouping, the two metrics reach
the balance around λ = 0.1 and λ = 0.2, which leads to the
highest ARI and F1 score. The grouping results have the
best agreement with ground truth, which can also be proven
by the highest AMI, NMI and Purity score. However, if we
continue increasing λ, these metrics will decrease and drop
to an abysmal level. When λ = 1, the model simply merges
all tokens into a single group, which leads to perfect Recall
but inferior results for all other metrics. For localization,
λ = 0.1 have the best CorLoc score and performs well on
mBO.

Influence of Kmax. Our model includes a hyperparam-
eter, denoted as Kmax, which determines the maximum
number of segmentations/slots that the model can produce.
Ideally, Kmax should be approximately equal to the highest
number of objects present in any image within the dataset.
Nonetheless, our model still yields satisfactory results even
when Kmax is set higher than this ideal value. We have con-
ducted a comparative analysis of five distinct Kmax settings
on MOVi-E dataset, as detailed in Table 5. Our findings in-
dicate that when Kmax exceeds the actual maximum object
count(MOVi-E includes at most 23 objects), most perfor-
mance metrics tend to decrease as Kmax increases. How-
ever, most metrics keep robust and consistently outperform
the fixed-slot model. Notably, the metric mBO even shows
improvement with very large values of Kmax. The experi-
ments demonstrate the robustness of our model to variations
in Kmax.

Comparison with oracle model. An oracle model for
slot number selection is that we provide the ground-truth
object number of each instance for DINOSAUR. We com-
pare our model with this oracle model. The comparative
analysis, presented in Table 6, reveals that our model not
only matches but in some cases surpasses the performance
of the oracle model. This is particularly noteworthy as our
model achieves these results without access to the exact ob-



Table 2. Ablation study on the designs of masked slot decoder.

Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

24 slots 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14
Zero Mask 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
Zero Slot† 0.00 21.19 100.00 33.93 2.21 0.08 33.87 0.00 0.00

Leanrnable Slot† 0.00 21.19 100.00 33.93 2.21 0.08 33.87 0.00 0.00

Raw Image Ours Zero/learnable slot 24 slot

Figure 4. Illustration of the segmentation mask of three designs of mask slot decoders and ordinary 24-slot model.

ject count per instance. Such findings prove the effective-
ness of our approach in slot number determination.

6. Results of semantic-level masks on COCO

In the main paper, we evaluate the metrics on COCO ac-
cording to the instance mask. Moreover, we report the re-
sults based on semantic-level masks in Tab. 7 for further un-
derstanding. Compared with instance-level results, group-
ing metrics like ARI and F1 score are lower, indicating that
the model prefers instance-level object discovery to class-
level. Overall, the results of semantic-level and instance-
level masks are consistent.

7. Comparison with Unsupervised Multiple In-
stance Segmentation Method

Our work falls in unsupervised object discovery, which
aims to locate and distinguish between different objects in
the image without supervision. However, it does not nec-
essarily provide fine-grained segmentation of each object.
In different granularity, unsupervised instance segmentation
aims to get a detailed mask for each localized object, clearly
demarcating its boundaries.

Most unsupervised object segmentation methods follow
a pipeline: initially creating pseudo masks using a self-
supervised backbone and subsequently training a segmenta-
tion model based on these pseudo masks. In our discussion,
we will primarily concentrate on the initial stage of these
models. We compare our model with MaskCut proposed in
CutLER [6], since it can generate multiple instance segmen-

tation while other methods either segment only one object
from each image [1, 7], or generate overlapping masks [5].
To accelerate MaskCut’s inference, we work with a fixed
subset here.

Table. 8 demonstrate that our model is great at distin-
guishing objects apart, whereas MaskCut is good at creat-
ing masks that closely match objects (thought some masks
might cover more than one object). Unlike our model,
MaskCut is based on iterative application of Normalized
Cuts, which assumes images have very clear foreground and
background distinctions, with only a few objects standing
out in the foreground. But this assumption does not hold
true for MOVi-E/C datasets. As a result, MaskCut produces
high-quality masks that capture object shapes well (higher
mBO on MOVi-C and COCO), but it struggles to tell dif-
ferent objects apart (lower ARI). This happens because it
often groups multiple objects as foreground in each itera-
tion of Normalized Cuts.

Additionally, our model can do object grouping in real-
time, which is another advantage compared to MaskCut.

8. Results on Object Property Prediction on
CLEVR10

In addition to MOVi-C, we study the usefulness of the adap-
tive slot attention of property prediction on CLEVR10. Fol-
lowing the setting of [2], we provide experiments of object
position regression and color prediction.

Our experiments employ a one-hidden layer MLP as the
downstream model. The model operates independently on
the retained slots. Specifically, a kept slot serves as the



Table 3. Ablation study on the necessity of Gumbel Softmax.

Pair-Counting Matching Information

Models ARI P. R. F1 mBO CorLoc Purity AMI NMI

24 slot 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14
With Gumbel 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
wo Gumbel 61.76 87.49 57.88 67.74 31.31 88.85 68.85 77.51 77.73

Raw Image With Gumbel Without Gumbel Slot Distribution

Figure 5. Illustration of the segmentation mask without Gumbel softmax and with Gumbel softmax respectively.

model’s input, yielding a vector containing property predic-
tions for that particular slot. We employ cross-entropy loss
for color prediction and mean squared error (MSE) loss for
coordinate regression. When both tasks are undertaken, we
sum these two losses to calculate the total loss. We align
predictions with targets with the Hungarian algorithm [3],
minimizing the total loss of the assignment.

We present results in terms of the regression R2 score
for position estimation. For the color prediction task, to
better compare the results for the model with different slot
numbers, we provide the precision, recall and the Jaccard
index. The results are provided in Tab. 9.

In our experiments with CLEVR10, the 6-slot model
achieved the best Jaccard index among fixed-slot models.
Notably, our model yields a superior Jaccard index to all
fixed slot models. This demonstrates the effectiveness of
our adaptive slot attention mechanism.

Additionally, our model demonstrates superior perfor-
mance in terms of R2 score for coordinate regression on
CLEVR10. It is worth noting that the 3-slot model fails to
predict the object coordinate well, with R2 score less than
0. This highlights the importance of the slot number. With
an improper slot number, the model may be not able to fit
the data.

9. GENESIS-V2 with DINO backbone
In the main paper, we inherit the official implementation of
GENESIS-V2 with UNet encoder. For better comparison,
we provide results with the same DINO ViT/B-16 backbone
as our models in Tab. 10. GENESIS-V2 with DINO back-
bone shows consistent improvement across all metrics, par-
ticularly in ARI. However, it significantly falls behind our
method, further validating our approach’s effectiveness. As

illustrated in Fig 6, 7 & 8, compared to GENESIS-V2 with
DINO backbone, our model can better determine the proper
slot number and generate object mask closer to the bound-
ary of an object, which makes our AdaSlot better on various
metrics, especially mBO.

Moreover, other than the heuristic stopping rule
of GENESIS-V2, our method introduces a novel
end-to-end approach to selecting the slot numbers.

10. More Visualization

To provide a more comprehensive understanding of our
methods, we have included additional visualizations in
Fig. 6, Fig. 7 and Fig. 8. For each dataset, we select five
examples and compare our model with GENESIS-V2 and
fixed-slot DINOSAUR. Our model segments the raw image
into regions that are not only semantically coherent but also
highly meaningful. Moreover, our model showcases adapt-
ability by dynamically adjusting the slot number in accor-
dance with the complexity of the images.

11. Discussion and Limitations

Our model primarily applies to cases with clearly defined
and thoroughly segmented objects. For situations similar to
COCO, with numerous complex objects and incomplete an-
notations, the learned objects may not necessarily align with
manual annotations. Additionally, due to the characteris-
tics of the feature reconstruction, the performance on dense
small objects is not very outstanding. When compare our
model of Kmax with the fixed slot model of K = Kmax,
our model produces fewer masks, and more small objects
will be missed. However, the fixed-slot counterpart will also
over-segment one object into multiple parts. Further, the



Table 4. Ablation on the influence of different λ

Pair-Counting Matching Information

λ ARI P. R. F1 mBO CorLoc Purity AMI NMI

0.01 62.99 87.44 59.50 68.93 30.47 85.54 69.84 78.05 78.26
0.02 63.68 87.49 60.36 69.55 30.16 85.08 70.48 78.35 78.55
0.05 70.95 85.67 71.48 76.32 29.46 86.79 76.67 80.87 81.02
0.1 75.30 84.74 78.64 80.20 29.47 90.09 80.12 82.32 82.45
0.2 76.07 78.79 86.51 81.30 26.28 86.68 80.49 81.50 81.61
0.5 33.52 38.04 89.27 51.74 9.05 13.26 50.40 46.62 46.74
1.00 0.01 21.20 99.96 33.93 2.21 0.08 33.87 0.03 0.03

Table 5. Experiments under different choices of Kmax. Our model is robust to Kmax and outperforms fixed slot model by a large
margin.

Pair-Counting Matching Information

Kmax ARI P. R. F1 mBO CorLoc Purity AMI NMI

24 76.73 85.21 80.31 81.42 29.83 91.03 81.28 83.08 83.20
28 75.24 86.46 77.04 80.06 30.03 90.33 80.25 82.75 82.88
32 73.77 87.17 74.34 78.71 30.29 89.63 79.10 82.32 82.46
36 71.87 88.08 70.94 76.93 30.57 89.39 77.60 81.77 81.92
40 70.64 88.61 68.87 75.81 31.03 89.07 76.63 81.35 81.51

24(fixed) 61.98 88.09 57.82 67.91 30.54 85.15 68.96 77.93 78.14

part-whole hierarchy in real-world scenes brings additional
complexity and challenge to unsupervised object discovery.
We leave improvements regarding this challenge for future
works.



Table 6. Comparison between our models and oracle models. Our model not only matches but in some cases surpasses the performance
of the oracle model.

Pair-Counting Matching Information

Dataset Model ARI P. R. F1 mBO CorLoc Purity AMI NMI

Movi-C Ours 75.59 84.64 86.67 84.25 35.64 76.80 85.21 78.54 78.60
Movi-C Oracle 75.68 85.67 84.99 84.30 33.82 72.36 85.48 78.55 78.62
Movi-E Ours 76.73 85.21 80.31 81.42 29.83 91.03 81.28 83.08 83.20
Movi-E Oracle 74.97 84.02 78.44 80.08 29.33 90.67 79.54 81.92 82.05

Table 7. Experiments of Semantic-level masks on COCO datasets. The semantic-level results are consistent with instance-level results.

Pair-Counting Matching Information

Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

DINOSAUR

4 20.72 85.02 52.18 61.47 20.61 13.89 59.32 24.93 24.96
6 28.93 89.92 58.04 67.12 30.85 41.00 65.43 32.35 32.38
7 27.43 90.66 54.15 64.17 31.10 39.79 62.48 31.72 31.75
8 25.32 91.29 48.89 59.89 29.93 34.69 58.31 30.74 30.78

10 23.02 92.16 43.58 55.26 29.75 32.47 53.84 29.71 29.75
12 20.99 92.89 38.80 50.79 29.17 30.70 49.68 28.75 28.79
20 15.72 94.12 27.97 39.43 26.44 23.33 39.35 25.77 25.82
33 11.60 95.07 19.99 30.04 24.03 18.87 30.97 23.14 23.21

Ours 26.60 89.71 55.30 64.90 30.53 37.74 63.62 30.56 30.59

Table 8. Comparsion between our model and MaskCut.

Pair-Counting Matching Information

Model Dataset ARI P. R. F1 mBO CorLoc Purity AMI NMI

MaskCut
MOVi-E 54.14 55.59 86.49 65.48 25.28 92.80 65.56 63.87 63.99
MOVi-C 59.05 75.60 88.08 79.19 40.84 88.71 78.36 60.80 60.88
COCO 29.18 73.58 74.47 69.73 33.95 71.88 69.23 32.20 32.25

Ours
MOVi-E 77.48 86.18 80.19 81.83 30.43 93.20 81.67 84.08 84.19
MOVi-C 72.81 86.13 86.08 84.33 37.33 80.16 83.81 75.97 76.03
COCO 40.38 81.26 67.16 68.55 26.94 47.12 67.33 45.53 45.59

Table 9. Experiments of object property prediction on CLEVR-10.

Slot Recall Precision Jaccard R2

3 26.84 58.19 26.84 -0.35
6 72.43 78.51 64.95 0.57
9 88.26 63.78 62.91 0.60

11 91.88 54.32 54.32 0.69
Ours 89.06 93.03 87.25 0.76



Table 10. Experiments of GENESIS-V2 with DINO backbone

Pair-Counting Matching Information

Dataset Model K ARI P. R. F1 mBO CorLoc Purity AMI NMI

MOVi-C GENESIS-V2 6 68.48 77.77 87.05 80.54 29.47 63.07 81.60 71.86 71.93
11 52.60 67.51 83.20 72.02 20.29 41.78 73.09 57.73 57.81

Ours 11 75.59 84.64 86.67 84.25 35.64 76.80 85.21 78.54 78.60

MOVi-E GENESIS-V2 9 72.99 74.70 86.28 78.89 16.39 48.60 77.89 79.32 79.43
24 65.76 72.64 78.08 73.23 21.39 72.42 73.30 74.20 74.35

Ours 24 76.73 85.21 80.31 81.42 29.83 91.03 81.28 83.08 83.20

COCO GENESIS-V2 33 24.30 75.93 53.30 56.17 19.76 22.37 55.74 32.05 32.11

Ours 33 39.00 81.86 66.42 68.37 27.36 47.76 67.28 44.11 44.17
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Figure 6. More visualizations on MOVi-E
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