DiverGen: Improving Instance Segmentation by Learning Wider Data Distribution with More Diverse Generative Data

Supplementary Material

A. Implementation Details

A.1. Data Distribution Analysis

We use the image encoder of CLIP [7] ViT-L/14 to extract image embeddings. For objects in the LVIS [3] dataset, we extract embeddings from the object regions instead of the whole images. First, we blur the regions outside the object masks using the normalized box filter, with the kernel size of (10, 10). Then, to prevent objects from being too small, we pad around the object boxes to ensure the minimum width of the padded boxes is 80 pixels, and crop the images according to the padded boxes. Finally, the cropped images are fed into the CLIP image encoder to extract embeddings. For generative images, the whole images are fed into the CLIP image encoder to extract embeddings. At last, we use UMAP [5] to reduce dimensions for visualization. τ is set to 0.9 in the energy function.

To investigate the potential impact of noise in the rare classes to TVG metrics, we conduct additional experiments to demonstrate the validity of TVG. We randomly take five different models each for the LVIS and LVIS + Gen data sources, compute the mean (μ) and standard deviation (σ) of their TVG, and calculate the 3 sigma range ($\mu + 3\sigma$ and $\mu - 3\sigma$), which we think represents the maximum fluctuation that potential noise could induce. As shown in Table 1, we find that: 1) The TVGs of LVIS all exceed the 3 sigma upper bound of LVIS + Gen, while the TVGs of LVIS + Gen are all below the 3 sigma lower bound of LVIS, and there is no overlap between the 3 sigma ranges of LVIS and LVIS + Gen; 2) For both LVIS + Gen and LVIS, there is no overlap between the 3 sigma ranges of different groups, e.g. frequent and common, common and rare. These two findings suggest that even in the presence of potential noise, the results can not be attributed to those fluctuations. Therefore, we think our proposed TVG metrics are reasonable and can support the conclusions.

A.2. Category Diversity

We compute the path similarity of WordNet [2] synsets between 1,000 categories in ImageNet-1K [9] and 1,203 categories in LVIS [3]. For each of the 1,000 categories in ImageNet-1K, if the highest similarity for that category is below 0.4, we consider the category to be non-existent in LVIS and designate it as an extra category. Based on this method, 566 categories can serve as extra categories. The names of these 566 categories are presented in Table 4.

	TVG_{f}^{box}	TVG_{f}^{mask}	TVG_c^{box}	TVG_c^{mask}	TVG_r^{box}	TVG_r^{mask}				
μ	9.98	8.60	16.59	13.36	30.23	24.22				
σ	0.24	0.18	0.56	0.44	1.12	1.18				
$\mu + 3\sigma$	10.70	9.15	18.26	14.69	33.58	27.77				
$\mu-3\sigma$	9.25	8.06	14.91	12.04	26.88	20.68				
LVIS	13.16	10.71	21.80	16.80	39.59	31.68				
(a) LVIS + Gen										
	TVG ^b	TVG_{f}^{mask}	TVG_c^{box}	TVG_c^{mask}	TVG_r^{box}	TVG_r^{mask}				
μ	13.9	5 11.40	22.53	17.16	43.46	35.10				
σ	0.41	0.35	0.43	0.33	1.98	1.75				
$\mu + 3\sigma$	15.1	7 12.45	23.81	18.14	49.39	40.37				
$\mu - 3\sigma$		3 10.34	21.25	16.17	37.53	29.84				
LVIS + G	ien 9.64	8.38	15.64	12.69	29.39	22.49				
(b) LVIS										

Table 1. Statistics of train-val gap on different data sources.

A.3. Prompt Diversity

Limited by the inference cost of ChatGPT, we use the manually designed prompts as the base and only use ChatGPT to enhance the prompt diversity for a subset of categories. For manually designed prompts, the template of prompts is "a photo of a single {*category_name*}, {*category_def*}, in a white background". category_name and category_def are from LVIS [3] category information. For ChatGPT designed prompts, we select a subset of categories and use ChatGPT to enhance prompt diversity for these categories. The names of the 144 categories in this subset are shown in Table 5. We use GPT-3.5-turbo and have three requirements for the Chat-GPT: 1) each prompt should be as different as possible; 2) each prompt should ensure that there is only one object in the image; 3) prompts should describe different attributes of the category. Therefore, the input prompts to ChatGPT contain these three requirements. Examples of input prompts and the corresponding responses from ChatGPT are illustrated in Figure 3. To conserve output token length, there is no strict requirement for ChatGPT designed prompts to end with "in a white background", and this constraint will be added when generating images.

A.4. Generative Model Diversity

We select two commonly used generative models, Stable Diffusion [8] and DeepFloyd-IF [10]. For Stable Diffusion, we use Stable Diffusion V1.5, with 50 inference steps and a guidance scale of 7.5. All other parameters are set to their defaults. For DeepFloyd-IF, we use the output images from stage II, with stage I using the weight IF-I-XL-v1.0 and stage II using IF-II-L-v1.0. All parameters are set to their defaults.

A.5. Instance Annotation

We employ SAM [4] ViT-H as the annotation model. We explore two annotation strategies, namely SAM-foreground and SAM-background. SAM-foreground uses points sampled from foreground objects as input prompts. Specifically, we first obtain the approximate region of the foreground object based on the cross-attention map of the generative model using a threshold. Then, we use k-means++ [1] clustering to transform dense points within the foreground region into cluster centers. Next, we randomly select some points from the cluster centers as inputs to SAM. We use various metrics to evaluate the quality of the output mask and select the mask with the highest score as the final mask. However, although SAM-foreground is intuitive, it also has some limitations. Firstly, cross-attention maps of different categories require different thresholds to obtain foreground regions, making it cumbersome to choose the optimal threshold for each category. Secondly, the number of points required for SAM to output mask varies for different foreground objects. Complex object needs more points than simple object, making it challenging to control the number of points. Additionally, the position of points significantly influences the quality of SAM's output mask. If the position of points is not appropriate, this strategy is prone to generating incomplete masks.

Therefore, we discard SAM-foreground and propose a simpler and more effective annotation strategy, SAMbackground. Due to our leveraging of the controllability of the generative model in instance generation, the generative images have two characteristics: 1) each image predominantly contains only one foreground object; 2) the background of the images is relatively simple. SAM-background directly uses the four corner points of the image as input prompts for SAM to obtain the background mask, then inverts the background mask as the mask of the foreground object. The illustrations of point selection for SAM-foreground and SAM-background are shown in Figure 1. By using SAM-background for annotation, more refined masks can be obtained. Examples of annotations from SAM-foreground and SAM-background are shown in Figure 2.

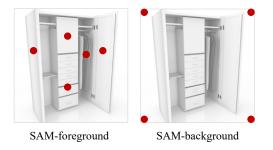


Figure 1. Illustrations of point selection for SAM-foreground and SAM-background.



Figure 2. Examples of annotations from SAM-foreground and SAM-background. By using SAM-background for annotation, more refined masks can be obtained.

To further validate the effectiveness of SAM-background, we manually annotate masks for some images as ground truth (gt). We apply both strategies to annotate these images and calculate the mIoU between the resulting masks and the ground truth. The results in Table 2 indicate that SAMbackground achieves better annotation quality.

Strategy	mIoU		
SAM-foreground	0.8163		
SAM-background	0.9418		

Table 2. Results of SAM-foreground and SAM-background.SAM-background achieves better annotation quality.

A.6. Instance Filtration

We use the image encoder of CLIP [7] ViT-L/14 to extract image embeddings. The embedding extraction process is consistent with Sec A.1. Then we calculate the cosine similarity between embeddings of objects in LVIS training set and embeddings of generative images. For each generative image, the final CLIP inter-similarity is the average similarity with all objects of the same category in the training set. Through experiments, we find that when the filtering threshold is 0.6, the model achieves the best performance and strikes a balance between data diversity and quality, so we set the threshold to 0.6.

Furthermore, we also explore other filtration strategies. From our experiments, using pure image-trained models like DINOv2 [6] as image encoder or combining CLIP score and CLIP inter-similarity is not as good as using just CLIP inter-similarity alone, as shown in Table 3. Therefore, we ultimately opt to only use CLIP inter-similarity.

Strategy	AP^{box}	AP^{mask}	AP_r^{box}	AP_r^{mask}
DINOv2	48.02	42.39	40.31	35.27
CLIP score + CLIP inter-similarity	49.82	44.30	45.26	40.92
CLIP inter-similarity	50.07	44.44	45.53	41.16

Table 3. Results of different filtration strategies.

A.7. Instance Augmentation

In instance augmentation, we use the instance paste strategy proposed by Zhao et al. [11] to increase model learning efficiency on generative data. Each image contains up to 20 pasted instances at most.

The parameters not specified in the paper are consistent with X-Paste [11].

B. Visualization

B.1. Prompt Diversity

We find that images generated from ChatGPT designed prompts have diverse textures, styles, patterns, etc., greatly enhancing data diversity. The ChatGPT designed prompts and the corresponding generative images are shown in Figure 4. Compared to manually designed prompts, the diversity of images generated from ChatGPT designed prompts can be significantly improved. A visual comparison between generative images from manually designed prompts and ChatGPT designed prompts is shown in Figure 5.

B.2. Generative Model Diversity

The images generated by Stable Diffusion and DeepFloyd-IF are different, even within the same category, significantly enhancing the data diversity. Both Stable Diffusion and DeepFloyd-IF are capable of producing images belonging to the target categories. However, the images generated by DeepFloyd-IF appear more photorealistic and consistent with the prompt texts. This indicates DeepFloyd-IF's superiority in image generation quality and controllability through text prompts. Examples from Stable Diffusion and DeepFloyd-IF are shown in Figure 6 and Figure 7, respectively.

B.3. Instance Annotation

In terms of annotation quality, masks generated by max CLIP [11] tend to be incomplete, while our proposed SAMbg is able to produce more refined and complete masks when processing images of multiple categories. As shown in Figure 8, our proposed annotation strategy can output more precise and refined masks compared to max CLIP.

B.4. Instance Augmentation

The use of instance augmentation strategies helps alleviate the limitation in relatively simple scenes of generative data and improves the efficiency of model learning on the generative data. Examples of augmented data are shown in Figure 9.

References

[1] David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding. In *Proc. Annual ACM-SIAM* Symposium on Discrete algorithms, pages 1027–1035, 2007. 2

- [2] Christiane Fellbaum. Wordnet. In *Theory and applications of ontology: computer applications*, pages 231–243. Springer, 2010.
- [3] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation. In *Proc. IEEE Conf. Comp. Vis. Patt. Recogn.*, pages 5356–5364, 2019. 1
- [4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander Berg, Wan-Yen Lo, et al. Segment anything. In *Proc. IEEE Int. Conf. Comp. Vis.*, pages 4015–4026, 2023.
 2
- [5] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv: Comp. Res. Repository*, 2018. 1
- [6] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *Trans. Mach. Learn. Research*, 2023. 2
- [7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *Proc. Int. Conf. Mach. Learn.*, pages 8748–8763. PMLR, 2021. 1, 2
- [8] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proc. IEEE Conf. Comp. Vis. Patt. Recogn.*, pages 10684–10695, 2022. 1
- [9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *Int. J. Comput. Vision*, 115: 211–252, 2015. 1
- [10] Alex Shonenkov, Misha Konstantinov, Daria Bakshandaeva, Christoph Schuhmann, Ksenia Ivanova, and Nadiia Klokova. Deepfloyd-if, 2023. 1
- [11] Hanqing Zhao, Dianmo Sheng, Jianmin Bao, Dongdong Chen, Dong Chen, Fang Wen, Lu Yuan, Ce Liu, Wenbo Zhou, Qi Chu, Weiming Zhang, and Nenghai Yu. X-paste: Revisiting scalable copy-paste for instance segmentation using CLIP and stablediffusion. *Proc. Int. Conf. Mach. Learn.*, 2023. 3

tench stingray junco jay kite_(bird_of_prey) spotted_salamander leatherback_sea_turtle desert_grassland_whiptail_lizard Gila_monster Nile_crocodile eastern_hog-nosed_snake water_snake African_rock_python eastern_diamondback_rattlesnake scorpion ptarmigan quail coucal toucan echidna jellyfish nematode sea_slug crayfish black_stork limpkin ruddy_turnstone oystercatcher sea_lion Pekingese toy_terrier Beagle Treeing_Walker_Coonhound Irish_Wolfhound Norwegian_Elkhound Weimaraner Border_Terrier Norwich_Terrier Sealyham_Terrier Dandie_Dinmont_Terrier Standard_Schnauzer Soft-coated_Wheaten_Terrier Curly-coated_Retriever German_Shorthaired_Pointer Gordon_Setter Welsh_Springer_Spaniel Kuvasz Dobermann Appenzeller_Sennenhund Tibetan_Mastiff Alaskan_Malamute Pomeranian Pembroke_Welsh_Corgi Standard_Poodle hyena grey_fox Siamese_cat snow_leopard

great_white_shark brambling indigo_bunting magpie fire_salamander axolotl banded_gecko agama European_green_lizard triceratops smooth_green_snake vine_snake Indian_cobra sidewinder_rattlesnake tick ruffed_grouse partridge bee_eater red-breasted_merganser platypus sea_anemone conch chiton hermit_crab spoonbill common_gallinule dunlin albatross Chihuahua Shih_Tzu Rhodesian_Ridgeback Bloodhound English_foxhound Italian_Greyhound Otterhound Staffordshire_Bull_Terrier Kerry_Blue_Terrier Yorkshire_Terrier Airedale_Terrier Boston_Terrier Scottish_Terrier West_Highland_White_Terrier Golden_Retriever Vizsla Brittany_dog Cocker_Spaniel Schipperke Miniature_Pinscher Entlebucher_Sennenhund Great_Dane Siberian_Husky Chow_Chow Cardigan_Welsh_Corgi dingo red_fox tabby_cat Egyptian_Mau jaguar

tiger_shark goldfinch American_robin chickadee smooth_newt American_bullfrog green_iguana frilled-necked_lizard chameleon worm_snake kingsnake night_snake green_mamba trilobite centipede prairie_grouse sulphur-crested_cockatoo hornbill black_swan wallaby brain_coral snail chambered_nautilus isopod great_egret American_coot common_redshank grey_whale Japanese_Chin King_Charles_Spaniel Afghan_Hound Bluetick_Coonhound Redbone_Coonhound Whippet Saluki American_Staffordshire_Terrier Irish_Terrier Wire_Fox_Terrier Cairn_Terrier Miniature_Schnauzer Tibetan_Terrier Lhasa_Apso Labrador_Retriever English_Setter Clumber_Spaniel Sussex_Spaniel Groenendael_dog Greater_Swiss_Mountain_Dog Boxer St._Bernard Affenpinscher Keeshond Toy_Poodle dhole kit_fox tiger_cat lynx cheetah

electric_ray house_finch bulbul American_dipper newt loggerhead_sea_turtle Carolina_anole alligator_lizard Komodo_dragon ring-necked_snake garter_snake boa_constrictor Saharan_horned_viper harvestman black_grouse peafowl lorikeet jacamar tusker wombat flatworm slug American_lobster white_stork crane_bird bustard dowitcher dugong Maltese Papillon Basset_Hound Black_and_Tan_Coonhound borzoi Ibizan_Hound Scottish_Deerhound Bedlington_Terrier Norfolk_Terrier Lakeland_Terrier Australian_Terrier Giant_Schnauzer Australian_Silky_Terrier Flat-Coated_Retriever Chesapeake_Bay_Retriever Irish_Setter English_Springer_Spaniel Irish_Water_Spaniel Malinois Bernese_Mountain_Dog Bullmastiff husky Samoyed brussels_griffon Miniature_Poodle African_wild_dog Arctic_fox Persian_cat leopard mongoose

meerkat bee stick_insect lacewing small_white_butterfly fox_squirrel ox Alpine_ibex weasel skunk orangutan guenon black-and-white_colobus howler_monkey ring-tailed_lemur eel gar_fish aircraft_carrier bakery barn lighthouse bookstore carousel castle chain-link_fence church clogs construction_crane desktop_computer drilling_rig fire_screen gas_pump radiator_grille half-track harp honeycomb knot lighter sawmill mask megalith modem mortar_and_pestle mousetrap neck_brace ocarina oscilloscope parallel_bars plectrum pirate_ship plate_rack prison radio restaurant schooner shoji_screen_or_room_divider slot_machine motorboat

dung_beetle ant praying_mantis damselfly sea_urchin guinea_pig water_buffalo hartebeest mink badger chimpanzee patas_monkey proboscis_monkey titi_monkey indri rock_beauty_fish lionfish altar balance_beam barometer bell_tower breakwater tool_kit catamaran chainsaw movie_theater spiral_or_coil croquet_ball disc_brake electric_locomotive flute golf_ball grocery_store hand-held_computer combine_harvester hook lens_cap lipstick messenger_bag matchstick military_uniform monastery mosque moving_van notebook_computer odometer oxygen_mask patio Pickelhaube block_plane plunger hockey_puck radio_telescope rugby_ball CRT_monitor balaclava_ski_mask snorkel spider_web

rhinoceros_beetle grasshopper cicada red_admiral_butterfly sea_cucumber wild_boar bison impala_(antelope) black-footed_ferret armadillo gibbon macaque marmoset Geoffroy's_spider_monkey red_panda clownfish academic_gown apiary baluster_or_handrail bassinet baby_bib breastplate automated_teller_machine cello chiffonier cliff_dwelling candy_store cuirass dock entertainment_center fountain gong guillotine hard_disk_drive holster gymnastic_horizontal_bar library lotion maraca maypole missile monitor mosquito_net muzzle obelisk oil_filter palace pedestal picket_fence planetarium police_van punching_bag rain_barrel safe seat_belt slide_rule keyboard_space_bar spindle

fly cricket_insect leafhopper monarch_butterfly hare warthog bighorn_sheep llama otter three-toed_sloth siamang langur white-headed_capuchin common_squirrel_monkey snoek_fish sturgeon accordion assault_rifle barbershop bassoon boathouse butcher_shop cassette_player chain Christmas_stocking cloak cradle dam dome face_powder French_horn greenhouse hair_spray harmonica home_theater jigsaw_puzzle lifeboat loupe_magnifying_glass marimba maze mobile_home moped tent metal_nail oboe pipe_organ pan_flute photocopier pier plastic_bag prayer_rug purse fishing_casting_reel scabbard shoe_store sliding_door spatula stage

steam_locomotive stone_wall submarine suspension_bridge thatched_roof tobacco_shop toy_store turnstile vestment whistle wool yurt menu baguette acorn_squash Granny_Smith_apple hay meatloaf tea_cup cliff promontory volcano rapeseed acorn gyromitra bolete

through_arch_bridge tram sundial swing threshing_machine toilet_seat trimaran typewriter_keyboard viaduct window_screen split-rail_fence website plate cabbage butternut_squash jackfruit carbonara pot_pie eggnog coral_reef sandbar baseball_player daisy rose_hip stinkhorn_mushroom corn_cob

steel_drum stretcher sunglasses tape_player throne torch triumphal_arch vaulted_or_arched_ceiling sink window_shade shipwreck crossword guacamole broccoli cardoon cherimoya_(custard_apple) chocolate_syrup red_wine mountain geyser beach bridegroom yellow_lady's_slipper horse_chestnut_seed earth_star_fungus

stethoscope stupa sunscreen television tile_roof totem_pole trombone velvet_fabric whiskey_jug airplane_wing sailboat dust_jacket trifle spaghetti_squash mushroom pomegranate dough espresso bubble lakeshore valley scuba_diver corn coral_fungus hen_of_the_woods_mushroom

Table 4. Extra categories from ImageNet-1K.

Bible bubble_gum corkboard dollar golf_club pan_(metal_container) road_map sparkler_(fireworks) turtleneck_(clothing) wind_chime clasp machine_gun cornet garden_hose windshield_wiper armor frog hose antenna coatrack poker_(fire_stirring_tool) dragonfly lanyard paperback_book shovel weathervane ski clipboard crayon toothpick shot_glass pipe pouch pliers dining_table envelope

pirate_flag elevator_car cougar dolphin handcuff pew_(church_bench) satchel spider violin headstall_(for_horses) crab_(animal) pin_(non_jewelry) bottle_opener money needle pretzel hairpin belt_buckle hook plow_(farm_equipment) cufflink musical_instrument mat_(gym_equipment) razorblade turkey_(food) trampoline tray router_(computer_equipment) latch business_card sled steering_wheel telephone_pole hair_curler cart legume

bookmark chocolate_mousse cream_pitcher eyepatch hockey_stick piggy_bank sawhorse string_cheese waffle_iron fishing_rod flamingo spear easel saddle_(on_an_animal) liquor tongs tripod streetlight Lego vinegar chopstick sharpener gargoyle earring ambulance applesauce tissue_paper battery fig_(fruit) padlock key deck_chair fire_hose handle oar

shopping_cart

bow_(weapon) compass cylinder fruit_juice popsicle pistol shawl Tabasco_sauce whistle coat_hanger stirrup drumstick dumbbell garbage bamboo ski_pole flagpole coleslaw thumbtack strap salad bat_(animal) underdrawers sword pencil jam lamppost lollipop sunglasses asparagus bolt green_bean ladle screwdriver wolf trench_coat

Table 5. Categories of ChatGPT designed prompts.

Example of using ChatGPT to design prompts

🙌 Human Input:

Please write 20 prompts for stable diffusion to generate images of cream pitcher.

Each prompt needs to be different, the focus of the description should be the different attributes of the category, such as if the category is animal, the prompts should describe the animal's color, size, age, species, etc., if it is food, the prompts should describe the color of food, brand, size, freshness, packaging type, packaging color, etc.

Each prompt should ensure that there is only one entity in the generated image. The prompt should start with words like "a photo of ", "a real photo of", "an image of ", "a photography of ", "an illustration of ", etc.

The output result should not contain anything else, just a prompt list in the format:

- 1. promptA
- 2. promptB
- 3. promptC

• • •

The first sentence of the output is "this is the list:".

ChatGPT Response:

This is the list:

1. A photo of a small cream pitcher with a glossy white finish.

2. An image of a vintage cream pitcher with delicate floral patterns.

3. A real photo of a large cream pitcher made of fine bone china.

4. A photography of a modern cream pitcher with a sleek silver handle.

5. An illustration of a cream pitcher in a vibrant shade of turquoise.

6. A photo of a small cream pitcher with a rustic, weathered appearance.

7. An image of a cream pitcher adorned with intricate gold filigree.

8. A real photo of a tall cream pitcher with a matte black finish.

9. A photography of a cream pitcher in a classic white color with a scalloped edge.

10. An illustration of a cream pitcher shaped like a whimsical cow.

11. A photo of a vintage cream pitcher with a charming polka dot design.

12. An image of a cream pitcher made of clear glass with a frosted bottom.

13. A real photo of a cream pitcher in a unique hourglass shape.

14. A photography of a cream pitcher with a playful print of colorful flowers.

15. An illustration of a cream pitcher with a hand-painted blue and white pattern.

16. A photo of a small cream pitcher made of delicate porcelain.

17. An image of a cream pitcher with a textured surface resembling tree bark.

18. A real photo of a cream pitcher in a vibrant shade of coral pink.

19. A photography of a cream pitcher with a gold-trimmed spout and handle.

20. An illustration of a cream pitcher shaped like a graceful swan.

Figure 3. Example of using ChatGPT to design prompts.

Figure 4. Examples of ChatGPT designed prompts and corresponding generative images. Images generated from ChatGPT designed prompts have diverse textures, styles, patterns, etc.

Images of manually designed prompts.

Images of ChatGPT designed prompts.

Figure 5. Examples of generative data using different prompts. By using prompts designed by ChatGPT, the diversity of generative images in terms of shapes, textures, etc. can be significantly improved.

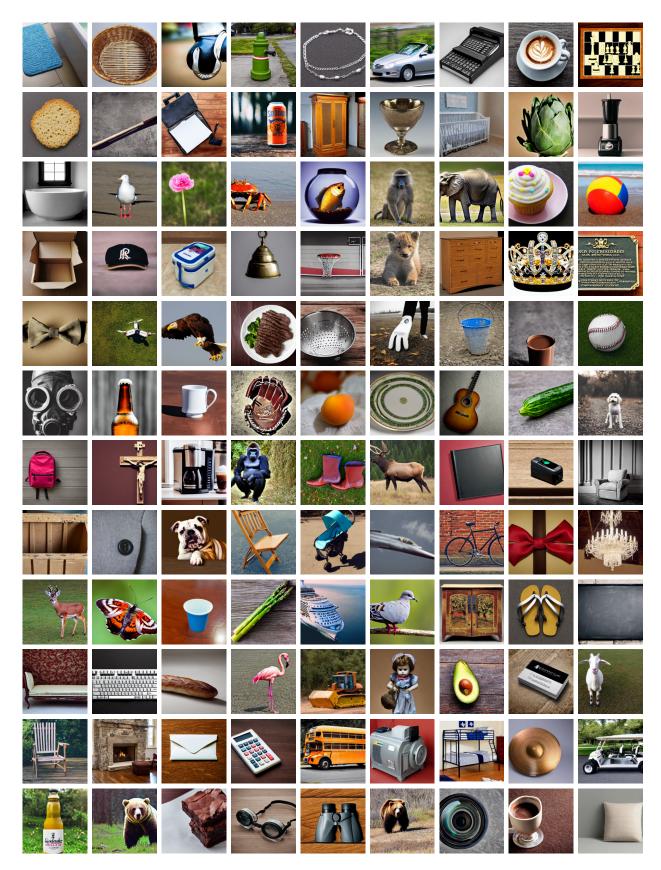


Figure 6. Examples from Stable Diffusion. The samples generated by different generative models vary, even within the same category.

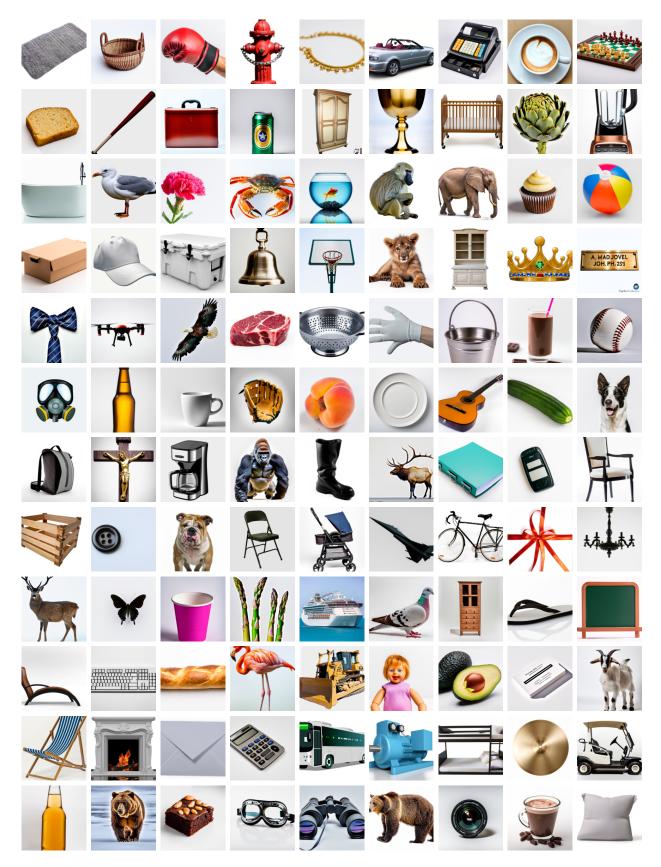


Figure 7. Examples from DeepFloyd-IF. The samples generated by different generative models vary, even within the same category.

Figure 8. Examples of different annotation strategies. Masks generated by max CLIP tend to be incomplete, while our proposed SAM-bg is able to produce more refined and complete masks when processing images with multiple categories.

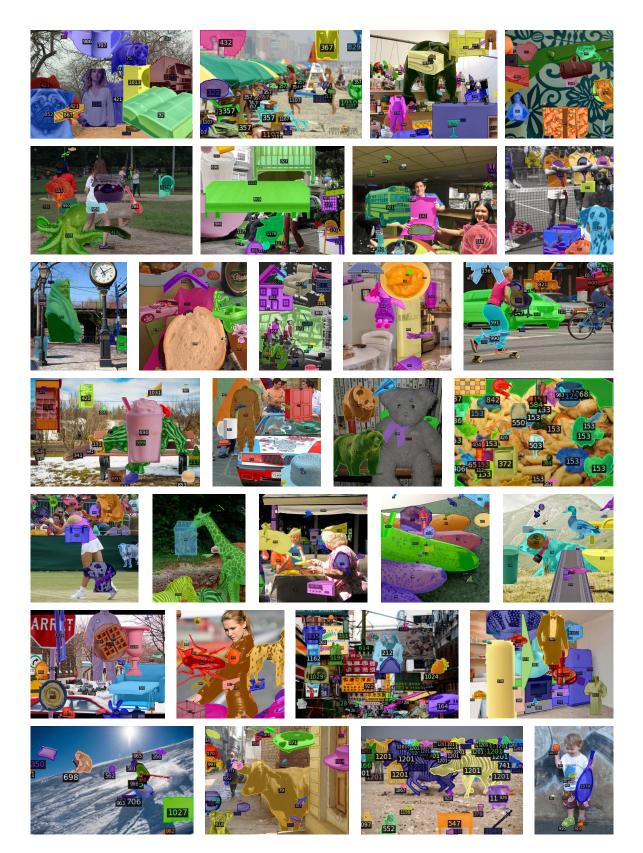


Figure 9. Examples of augmented data. The use of instance augmentation strategies helps alleviate the limitation in relatively simple scenes of generative data and improves the efficiency of model learning on the generative data.