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Supplementary Material

In this supplementary material, we provide an experi-
ment on REVIDE dataset in Appendix A and more datasets
details B. Next, we present additional ablation studies and
discussions in Appendix C and Appendix D, respectively.
In Appendix E, we showcase more visual results, including
alignment results and video dehazing results.

A. Experiment on REVIDE dataset.

Data
Settings Methods

REVIDE Runtime
(s)

Ref.PSNR ↑ SSIM ↑

Unpaired

DCP [20] 11.03 0.7285 1.39 CVPR’09
RefineNet [72] 23.24 0.8860 0.105 TIP’21
CDD-GAN [6] 21.12 0.8592 0.082 ECCV’22

D4 [63] 19.04 0.8711 0.078 CVPR’22

Paired

PSD [7] 15.12 0.7795 0.084 CVPR’21
RIDCP [59] 22.70 0.8640 0.720 CVPR’23
PM-Net [38] 23.83 0.8950 0.277 ACMM’22

MAP-Net [60] 24.16 0.9043 0.668 CVPR’23

Non-aligned
NSDNet [15] 23.52 0.8892 0.075 arXiv’23
DVD (Ours) 24.34 0.8921 0.488 -

Table S1. Comparison of the proposed method and methods with
aligned ground truth on REVIDE dataset.
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Figure S1. Visual comparison on REVIDE dataset.

To further verify the effectiveness of our proposed
method, we evaluate the proposed method against SOTA
methods that require aligned ground truths. Table S1 re-
ports the evaluation results on the REVIDE dataset in terms
of PSNR and SSIM. We can see that our proposed method
obtains higher PSNR. In this work, we mainly focus on
the real-world video dehazing in driving scenarios. How-
ever, we have also obtained good results on smoke data
(REVIDE), indicating that our method is effective for both
smoke/haze removal.

We further present visual observation comparisons in
Fig. S1. The dehazing results of all the competitive meth-
ods contain artifacts, and the detail restoration is not ideal.

In contrast, the proposed method generates much clearer re-
sults that are visually closer to the ground truth.

B. More datasets details

B.1. Spatio-temporal Misalignment Causes.

Here, due to real-world collection scenarios, as depicted
in Fig. 1, avoidance maneuvers for pedestrians and vehi-
cles on the road result in varying durations of collected
hazy/clear video pairs with the same starting and ending
points. Consequently, temporal misalignment occurs in
hazy/clear video pairs. Similarly, avoidance maneuvers also
lead to different shooting trajectories, causing spatial mis-
alignment (i.e., pixel misalignment). Additionally, the dy-
namic movement of pedestrians and vehicles contributes to
spatial misalignment (i.e., semantic misalignment).

B.2. Compare with Other Datasets

Compared to the 1981 pairs of indoor smoke data from the
REVIDE [71] dataset, our non-aligned dataset GoProHazy
consists of a total of 4256 pairs, and the no-reference Driv-
ingHazy dataset comprises 1807 frames of hazy images.
Moreover, our outdoor scenes are more numerous and re-
alistic compared to indoor settings. Furthermore, in con-
trast to the large-scale synthetic dataset HazeWorld from
MAP-Net [60], our proposed GoProHazy and DrivingHazy
datasets represent real driving scenarios under real-world
hazy weather conditions. This makes them more valuable
for research aimed at addressing dehazing in videos cap-
tured under real-world conditions.

C. More Ablation Studies

The number of input frames. Table S2 demonstrates that
optimal performance is achieved when using a three-frame
input. This is attributed to the advantage of utilizing mul-
tiple frames to mitigate alignment issues, but it also intro-
duces cumulative errors in alignment. As shown in Fig. S2,
we also present the influence of different input frames on
Lmfr. Here, balancing efficiency considerations, we choose
two frames as the input.

Number of Input frames 2 (Ours) 3 4
FADE ↓ 0.7598 0.7204 0.7634
NIQE ↓ 3.7753 3.7392 3.7984

Table S2. Ablation study for the number of input frames on Go-
ProHazy dataset.



Figure S2. The influence of different input frames on Lmfr

D. More Discussions

The impact of non-aligned scale. No doubt, the more
aligned the hazy/clear frame pairs, the better the dehazing
effect. However, our primary focus here is on the bound-
ary issues related to non-aligned scales. In the ablation ex-
periments of NSDNet [15], it was revealed that, compared
to cases with ground truth (GT), a non-aligned pixel off-
set exceeding 90 pixels (for an image size of 256×256)
results in a 0.7 dB decrease in PSNR, a 0.2 reduction in
structural similarity (SSIM), and a decrease of 0.02 and 0.5
in FADE [8] and NIQE [41], respectively. We think that,
in contrast to training with synthetic datasets, which may
result in suboptimal dehazing in real-world scenes, the mi-
nor performance decline introduced by non-alignment is en-
tirely acceptable. Moreover, during real-world data collec-
tion, we can easily control non-alignment within 90 pixels.

E. More Visual Results

The visualization of FCAS module. Here, we visualize the
effectiveness of the flow-guided attention sampler (FCAS)
in feature alignment, as shown in Fig. S3. We observe that
the features aligned by the FCAS module are nearly con-
sistent with the features of the current frame. The optical
flow used to guide sampling is visualized in Fig. S3 (c).
Note that the ablation study on the FCAS is visualized in
the main text.
More visualizations of video dehazing. We present ad-
ditional visual comparison results with state-of-the-art im-
age/video dehazing methods on the GoProHazy dataset in
Fig. S6. We observe that our proposed DVD method out-
performs in dehazing performance, particularly in distant
visibility and local detail restoration (i.e., texture and bright-
ness of scenes). The same dehazing issues are evident in the
visual comparisons on the DrivingHazy and InternetHazy
datasets. We present their visual comparisons separately in
Fig. S7 and Fig. S8.
Applications. To highlight the benefits of dehazing results
for downstream tasks, we employ the image segmentation
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Figure S3. The visualization of FCAS module.

(a) hazy (b) Ours

Figure S4. Visual results of object detection on the InternetHazy
dataset.

method FastSAM [73] 1 to assess the gains brought by var-
ious image/video dehazing methods. The test results, as
shown in Fig. S9, reveal that our proposed method achieves
superior segmentation performance, particularly in the sky
region. For the parameter settings of FastSAM, We em-
ployed the FastSAM-x model, setting the intersection over
union (IoU) to 0.8 and the object confidence to 0.005.

In Fig. S4, we conducted an object detection (yolov82)
to validate the driving-safety assistance. We see that both
vehicles and pedestrians are readily detected, enabling early
detection by drivers and ensuring their safe operation.
Video demo. To validate the stability of our video dehazing
results, we present a video result captured in a real driving
environment and compare it with the latest video dehazing
state-of-the-art method, MAP-Net [60]. We have included
this video-demo.mp4 file in the supplementary materials.
Limitations. In dense hazy scenarios, our method may ex-
hibit slight artifacts in the sky region during dehazing. From
the reported inference times in Table S1, it can be observed
that our method still fails to meet real-time requirements.

Figure S5. An example of failure cases in sky region.

1https://replicate.com/casia-iva-lab/fastsam
2https://github.com/ultralytics/ultralytics

https://replicate.com/casia-iva-lab/fastsam
https://github.com/ultralytics/ultralytics
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Figure S6. Comparsion of dehazing results on GoProHazy dataset.
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Figure S7. Comparsion of dehazing results on DrivingHazy dataset.
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Figure S8. Comparsion of dehazing results on InternetHazy dataset.
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Figure S9. Visual results of semantic segmentation on the InternetHazy dataset.


