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Abstract

This document serves as the supplementary material
for ”Evidential Active Recognition: Intelligent and Prudent
Open-World Embodied Perception”. Firstly, we offer an in-
depth look at the proposed dataset, covering aspects such as
the data collection procedure, associated statistics, and spe-
cific examples. Subsequently, we describe the training steps
and hyperparameters utilized in our proposed method, as
well as those applied in the compared baselines. Finally, we
provide a comprehensive analysis of the results and statistics
pertaining to our proposed method.

1. Difficulty-designated Testing Dataset
Given that the current indoor simulator as in [7, 9] do not pro-
vide standard evaluations for active recognition, we choose
to collect and organize a novel dataset specifically tailored
for this task. We observed that to effectively highlight the
necessity of movement during recognition, recognition chal-
lenges such as long distances and significant occlusions are
best accommodated in testing instances. To this end, we
introduce a new dataset in this paper comprising of 13200
testing instances across 27 indoor categories. The proposed
dataset will be released to the public.

The contribution of our proposed dataset is threefold.
First, to the best of our knowledge, no publicly available
dataset exists for evaluating active recognition agents in sim-
ulators. Our dataset fills this gap, offering a benchmark for
comparing various active recognition methods using widely-
accepted simulators under uniform evaluation protocols. Sec-
ond, we classify each testing instance in our dataset by its
recognition difficulty level. This difficulty rating takes into
account three factors, which is determined by comparing the
asset-only unoccluded mask with the observed target mask
and analyzing other target attributes. Third, recognizing that
the original semantic annotation [1] contains noise and arti-
facts, we have refined our testing dataset by eliminating all
unqualified testing instances.

1.1. Data generation

Our dataset is derived from the existing MP3D dataset [1],
which features 90 distinct buildings. A testing instance is
characterized by two components, namely, the agent’s start-
ing position and the segmentation map of the target. The
starting position of the agent encompasses both the camera’s
location and orientation, both of which are randomly sam-

pled within a given building. We then verify if there’s an
object, visible from this location, that satisfies the following
criteria: 1. The object belongs to one of the 27 categories of
interest. 2. The observable pixel count of the object must be
no less than 300. 3. The distance between the object and the
agent must range between 3 to 6 meters. If no object at the
current location satisfies the established criteria, the random
sampling process continues.

We generate 200 testing instances for each building, yield-
ing a total of 18000 instances. It is important to note that the
semantic annotations in the MP3D dataset [1] can be noisy
and prone to artifacts, necessitating a careful review of these
generated testing instances. Upon eliminating instances with
incorrect semantic annotations or poor photographic quality,
we are left with a final total of 13200 testing instances. Each
instance is assigned a difficulty level, which quantifies the
overall recognition challenges, factoring in visibility, relative
distance, and observed pixels. Here, visibility is calculated
as the ratio between observed mask and amodal mask of the
target, i.e., a heavier occlusion level or out-of-view condition
leads to a lower visibility. After normalizing each aspect,
these three components are linearly combined using respec-
tive weights of 0.2, 0.2, and 0.6 to calculate the difficulty
score. Instances with a score lower than 0.33 are classified
as ”hard”, those with scores ranging from 0.33 to 0.66 are
deemed ”moderate”, and the remaining instances are labeled
as ”easy”.

To be more specific, we define the visibility as a ratio,
denoted xvis, the relative distance in meters as xdist, and
the observed pixels as xpixel. Utilizing these parameters,
the difficulty level is computed according to the following
equation:

sdiff = 0.2∗xvis+0.2∗(1−norm(xdist))+0.6∗clip(
xpixel

102400
),

(1)
where norm(.) represents a normalization function that con-
verts the distance range from 3 to 6 meters into a scale from
0 to 1. The function clip(.) serves as a clipping mechanism,
restricting the input value to a maximum of 1. After obtain-
ing sdiff for each testing instance, the difficulty level is given
by 

hard if sdiff < 0.33

moderate if 0.33 ≤ sdiff ≤ 0.66

easy if sdiff > 0.66

. (2)

We employ the HM3D dataset [9], which includes 145
buildings, as the scene dataset for training. The generated



training instance begins with the random placement of an
agent and the subsequent query of a target object. Recogni-
tion difficulty is not supplied during training, as each train-
ing instance is generated in real-time, and rendering amodal
segmentation maps for randomly selected targets can be
time-consuming. During the evaluation phase, we use the
proposed dataset. Agents from various methods are deployed
at the specified location and tasked with identifying the same
object for each testing instance. A recognition method is
considered superior if it can yield a more accurate prediction
with a fixed number of movements.

1.2. Statistics of the Dataset

Figure 1 presents the statistics of the generated dataset. We
begin by illustrating the category distribution in Figure 1a.
Given that the data collection process is random, the category
distribution effectively mirrors the occurrence of different
classes across all buildings. Figure 1c displays the number
of different difficulty levels associated with each category.
Additionally, Figure 1 also provides the relative distance
distribution, visibility distribution, and occlusion distribution
for each category. Visibility is determined by the ratio of the
observed object mask to the amodal segmentation mask of
the target, thereby taking into account out-of-view cases. In
contrast, occlusion is calculated solely based on the agent’s
actual viewing window.

1.3. Dataset Visualization

Additional visualizations of testing instances can be found
in Figure 2. Each example features an image showing the
target as well as a full semantic segmentation. The caption
for each example includes the target category, difficulty level,
visibility (expressed as a percentage), and relative distance.
These examples demonstrate that the proposed dataset en-
compasses a wide range of viewing conditions that an agent
might encounter in real-world deployments.

2. Implementation Details
For the sake of reproducibility, this section details the imple-
mentation of our method alongside the compared baselines.
Initially, we clarify the network architectures employed in
this paper. Subsequently, we describe the training strategy
for various agents and the hyperparameters utilized during
the training phase.

2.1. Network Architecture

The recognition model in our proposed method is based on
Faster-RCNN [5], albeit with the region proposal network
removed as the query box is directly provided by the ground
truth. The query box could be further obtained by an class-
agnostic visual tracker [10]. The backbone of the recognition
model is ResNet-50 [3], pretrained on ImageNet [6], with the

first three residual blocks remaining fixed during subsequent
training. The ROI feature used for classification is derived
from the C4 head, as per [5]. The class prediction for a single-
step observation, namely, α in our main paper, is ensured to
be non-negative by applying the exponential function. Other
non-negative functions, such as the sigmoid function, could
also be used. The final opinion regarding the target category
is obtained by employing the combination approach outlined
in the main paper.

The policy component developed in our proposed method
comprises a visual encoder, an embedding layer to encode
the last action, a linear layer to predict action distribution
(actor), and a linear layer to predict the action’s value (critic).
The visual encoder receives inputs comprised of v0, vt, and
qt, with qt represented as a binary mask resized to match
the resolution of the visual observations. These inputs are
concatenated and passed through the visual encoder, which
consists of four convolution blocks. Each block includes
a 5 × 5 convolutional layer, a batch normalization layer, a
ReLU, and a 5×5 max pooling layer, aligning with the struc-
ture described in [11] for a fair comparison. The last action
at the previous step t − 1 is encoded with the embedding
layer and concatenated with the image feature following the
visual encoder. The aggregated feature is subsequently used
to predict both the action to be taken and its value.

The baselines compared in this paper exhibit a structure
similar to that of our proposed method. However, as outlined
in Amodal-Rec [11], we re-implement their method using
a single-layer conv-GRU to sequentially aggregate the fea-
tures from ResNet-50. The features from the conv-GRU is
then utilized to predict the class.

2.2. Training

As discussed in [2, 11], joint training of the recognition
model and the policy could result in sub-optimal outcomes.
This is primarily because the recognition model may not
provide accurate reward feedback for policy learning, partic-
ularly in the early training stage. Consequently, our proposed
method employs a staged training strategy. Initially, we train
the recognition model using frames collected by a heuristic
policy; specifically, a fixation policy that centers the target
within the observation. To further increase the randomness,
we implement the fixation policy with a 20% probability
assigned to stochastic move forward and 80% to other
fixation adjustments. This fixation policy also serves as
a baseline in experiments. Once trained, this recognition
model is then fixed and integrated into the proposed agent to
train the policy component. Unlike Amodal-Rec [11], our
method does not require retraining of our recognition model
to adapt to the learned policy. This is because our approach
generates predictions using only the current observation,
without relying on sequentially aggregated features.

The proposed method and other baselines are imple-



mented using PyTorch and trained with two NVIDIA 3090
GPUs. The batch size is set to 30 for both the recognition
and policy of our training. For the recognition model, we
employ stochastic gradient descent (SGD) with a learning
rate of 0.005, momentum of 0.9, and weight decay of 0.0005.
A learning rate scheduler is utilized with a step size of 5000
and a gamma of 0.9. For the policy, Proximal Policy Opti-
mization (PPO) [8] is used, applying the Adam optimizer
with a learning rate of 2.5× 10−5 and epsilon of 5× 10−5.
We set γ = 0.99 and τ = 0.95 during the computation of
returns. The policy training loss is thus a combination of the
action loss, value loss, and an action entropy loss to promote
exploratory behavior, with weighting coefficients of 1, 0.5,
and 0.01, respectively. Moreover, the training of the recogni-
tion part and the policy takes approximately 14 and 24 hours
to converge, respectively.

3. Quantitative Results and Analysis
3.1. Categorical Accuracy

Figure 3 illustrates the testing success rate for different ob-
ject categories in the proposed dataset. As was detailed in
the main paper, the success rate is computed based on the
prediction made after the final movement. Our method ex-
hibits notable improvement on certain categories, including
windows, sofas, curtains, bed and towels.

We observe an imbalance in recognition accuracy across
different categories. This discrepancy may stem from the
training approach of the recognition module, which utilizes
randomly sampled observations from training scenes. Some
object categories, such as gym equipment, are less prevalent
in training indoor environments, or are often positioned in
locations that are challenging to observe, like sinks. Conse-
quently, the training data for these categories is inadequate,
leading to sub-optimal results. A potentially more effective
approach could be to integrate a pre-trained vision recogni-
tion module, such as CLIP [4]. This alternative, however, is
left for future investigation.

3.2. Action Distribution

In Figure 4, we present the action distributions of our pro-
posed method at various steps (t = 1, . . . , 9), in comparison
with Amodal-Rec [11] and the established fixation policy.
A key observation is the relative infrequency of look up
and look down actions in both learned policies. This trend
can be attributed to the agent’s floor-level operation, where
look up and look down actions generally yield mini-
mal benefits for the recognition process. Additionally, our
proposed agent demonstrates a tendency to rotate or tilt its
camera during the initial four steps, followed by forward
movement in subsequent steps. This strategy suggests that
the learned policy prioritizes centering the target within the
viewing window, subsequently approaching it for enhanced

clarity and proximity in recognition. This approach mir-
rors human recognition tactics, wherein the target is initially
fixated upon before moving closer for better examination.
Lastly, our method exhibits a more varied action distribu-
tion compared to Amodal-Rec[11], indicative of a broader
range of exploratory behaviors in diverse recognition scenar-
ios.

3.3. Distance Change

In this study, we report the average relative distance between
the agent and the target across various steps, as illustrated
in Figure 5. Intuitively, being closer to the target enhances
recognition accuracy. With our proposed method, the agent
is able to reduce the average distance to the target by 0.85m
at the final step, given a forward movement of 0.25m per step.
It is important to highlight that navigating towards the target
in our experimental setup presents significant challenges.
The agent operates in an unseen environment and relies
solely on RGB observations, requiring to avoid blocking
obstacles for effective movements.

3.4. Statistical Analysis

We also present standard errors over five runs for two
learning-based methods in Table 1. Due to page constraints,
please refer to our main paper for the mean performance
metrics.

4. Qualitative Results

We have also included additional qualitative results of the
proposed method on the dataset in the form of a demon-
strative video. In each episode, the visual observation is
displayed on the left, with the predicted action and class for
the current observation noted in the respective left and right
corners. On the right side of the video, we provide both
the single-frame belief and the combined belief up to the
current timestep. Please refer to the combined belief for our
final prediction. We can observe the trend of the combined
opinion as more steps are taken.

5. Failure Cases

Our method’s failures are mainly of two types: (a) Naviga-
tion failures: These occur due to the complex navigation
skills required in the simulator. Failures often arise when
better viewpoints for recognition are inaccessible from the
starting location, owing to obstacles, varying floor levels,
or movement constraints. (b) Hard-level failures: As the
testing environments are completely novel, failures occur
when objects are distant, or have ambiguous appearances,
making acquiring new observations ineffective.



Table 1. The standard error of methods with 5 random seeds. Please refer to our main paper for their mean performance.

Method Easy Moderate Hard All
top-1 top-3 top-1 top-3 top-1 top-3 top-1 top-3

Amodal-Rec [11] ±0.3 ±0.0 ±0.4 ±0.1 ±0.5 ±0.1 ±0.4 ±0.1
Ours ±0.3 ±0.0 ±0.4 ±0.0 ±0.4 ±0.1 ±0.3 ±0.1
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(b) Instances for different distances between the spawning location and the target object.
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(c) Instances of different difficulty levels for each category.
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(d) Instances of different distances for each category.
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(e) Instances of different visibility ranges for each category.
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(f) Instances of different occlusion ranges for each category.

Figure 1. Additional statistics related to the proposed dataset, examining aspects such as category, distance, difficulty level, visibility ranges,
and occlusion ranges. The ch of dr and gym eq are short for ”chest of drawers” and ”gym equipment”, respectively.



Figure 2. Visualization of testing instances from our dataset. Each visualization includes an image with the target covered by a green amodal
mask and the corresponding semantic segmentation. Note that both the visualized image and the semantic segmentation are enlarged for
calculating visibility. The actual viewing window is displayed with increased brightness on the left of each example.
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Figure 3. The recognition success rate on each object category.
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Figure 4. Action distributions at steps t = 1, . . . , 9 on the proposed testing dataset.
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Figure 5. Distance to the target (meters) at steps t = 1, . . . , 10 on the proposed testing dataset.
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