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The SupMat, comprising this document and a video,
along with our code and pre-trained models, is available
here. We will post updates and project news on this link.

A. Pose initialization
Hand pose estimation: To initialize the hand pose, we
first crop around the hand with the hand detector from
100DoH [20], and use an off-the-shelf hand regressor,
METRO [15], to infer the MANO hand mesh. We em-
pirically found that METRO, a non-parametric method, is
more stable in predicting hand global rotation during object
occlusion than parametric regressors. To obtain MANO pa-
rameters for each estimated hand mesh with MANO topol-
ogy, we register the MANO model to the predicted meshes.
For each frame in a sequence, we compute the volume of the
watertight MANO mesh. We then fit a 1D Gaussian to the
volumes for each sequence. We remove frames with vol-
umes that are smaller than the mean of the Gaussian by 2.0
standard deviations or more. Although it is a simple heuris-
tic, we found this method to be effective in removing degen-
erate hand mesh predictions because non-parametric hand
regressors tend to produce meshes with small volumes in
degenerate cases. We use spherical interpolation (SLERP)
to infill MANO poses for missing frames. We experiment
with 2D keypoint detectors such as OpenPose [21] and Me-
diaPipe [25], but they are often very noisy during object
occlusion. Instead, we project the initial hand mesh from
METRO to image space and use this as the 2D keypoints.
We found that the 2D keypoints from METRO are more sta-
ble than those from existing 2D keypoint detectors.
Object pose estimation: Since we focus on a category-
agnostic setting, most existing object pose estimators [2]
are unsuitable for our setting because they are designed
for specific categories. To obtain initial object pose esti-
mates of a novel object without category-level supervision,
we perform structure-from-motion. We first obtain object
masks from an off-the-shelf segmentation network [6]. The
masks are used to create images with object-only pixels for
structure-from-motion (SfM). We use HLoc [18] for SfM
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with SuperGlue [19] and SuperPoints [7] and 40 keypoints
for multi-view matching. Since not all frames provide ob-
ject poses, we use SLERP to infill missing frames. SfM
often provides noisy point clouds. Therefore, we clean each
point cloud automatically by first computing its median cen-
ter, and the distance of the 20-percentile point to the center.
Points that are outside of 1.5× of this distance are removed.
We then subtract the point cloud with its median to center
the point cloud around zero. After centering the point cloud,
we normalize it such that the point cloud radius is 1.0. Sim-
ilar to hand 2D keypoints, we project 3D points from this
point cloud to obtain 2D object keypoints for the alignment.
Hand-object alignment: Since SfM only reconstructs the
point clouds up to a scale, we need to figure out the scale
(size factor) s of an object template. This is important be-
cause the object’s translation, denoted as to, is calculated
in the camera’s coordinate system assuming the scale is 1.
Further, the hand’s translation, represented by th, is in the
coordinate system of the cropped image around the hand.
Both these poses need to be aligned to the same space and
share the same camera intrinsic matrix K.

To align the hand and the object in a shared camera co-
ordinate space, we optimize an energy function,

E =
∑
t

Eh + Eo + ωsmooth · Esmooth (1)

where, for each frame, Eh is for the hand pose, Eo is for
the object pose, and Esmooth is for smoothness, weighted by
ωsmooth. In particular, a hand energy term is defined as

Eh(Rh, th) = ω2D · ρ(Jt − Ĵt) (2)

where Jt and Ĵt are the fitted and target 2D keypoints of the
hand joints at frame t respectively. The object energy term
is defined as Eo(s,Ro, to) =

ω2D · ρ(Xt
o − X̂t

o) + ωz ·
∥∥−cto,z

∥∥+
1
+ ωcontact

∥∥cth − cto
∥∥
1

(3)

where Xt
o and X̂t

o are the fitted and the target 2D projection
of the object point cloud at frame t; cto,z is the z-component
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of the object mean vertex; ∥·∥+1 is a clamped L1 loss that set
negative values to 0.0; ch and co are the mean of the hand
and object meshes. Finally, we have the smoothness term

Esmooth(s, to, th) =
∥∥cth − ct+1

h

∥∥2
2
+
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o

∥∥2
2
.

(4)

For the 2D projection terms, following [1], we use the
Geman-McClure [8] loss ρ(·) with a sigma of 25.0. We
empirically choose ωsmooth and ωcontact to be 100.0, ω2D to
be 1.0 and ωz to be 1000.0 for all sequences.

Intuitively, the hand energy term enforces the fitted hand
parameters to have the same 2D projection as the initial
pose estimate; the object energy term enforces the same
2D projection as the initial pose, avoids the object center
(its z-component) to be behind the camera, and encourages
hand-object proximity; the smoothness term maintains the
smoothness of the overall sequence.

We use a procedural fitting approach in which we first fit
the hand with the hand energy term for 4000 iterations with
a learning rate of 0.01, then we freeze the hand parameters
and fit the object energy term for 15000 iterations with a
learning rate of 0.01. Finally, we allow both hand and object
parameters to be optimized and jointly fit for all terms for
3000 iterations with a learning rate of 0.001. The fitting
often takes less than 5 minutes on a GeForce RTX 2080 Ti.

B. Pose refinement
As mentioned in the main paper, after training HOLD-Net,
we have more accurate hand and object shapes. The goal
of this pose refinement is to encourage better hand-object
contact and better pixel alignment of the hand and the object
by optimizing {th,Ro, to, β, s}.
Occlusion-aware loss: To enhance the pixel-alignment of
the hand and object meshes, we use Soft Rasterizer [16] to
render hand and object amodal [14] masks Mh and Mo.
Suppose the hand and object segmentation masks from off-
the-shelf prediction are Ŝh and Ŝo. Following [26], we use
an occlusion-aware mask loss

Lmask =
∥∥∥Mh − Ŝh

∥∥∥ · (1− Ŝo) +
∥∥∥Mo − Ŝo

∥∥∥ · (1− Ŝh) (5)

where all masks are binary masks (1 indicates the corre-
sponding class of interest). Intuitively, when fitting the hand
masks, with the term (1 − Ŝo), the loss will not penalize
cases where the hand falls on the object part of the image,
and vice versa when fitting the object masks.
Refinement details: The total fitting loss Lfitting is defined
as Lfitting = λcontactLcontact + λmaskLmask where we choose
λcontact to be 100.0 and λmask to be 1000.0. Due to lim-
ited GPU memory, for a given sequence, we uniformly sam-
ple 51 frames, and fit frame-independent parameters (β, s)

Object Sequence name
bleach ABF12
bleach ABF14
potted meat GPMF12
potted meat GPMF14
cracker box MC1
cracker box MC4
power drill MDF12
power drill MDF14
sugar box ShSu10
sugar box ShSu12
mustard SM2
mustard SM4
mug SMu1
mug SMu40
banana BB12
banana BB13
scissors GSF12
scissors GSF13

Table A. HO3D sequences for hand-object reconstruction

while allowing other parameters to change. Once (β, s) are
initialized, we freeze them and optimize {th,Ro, to} with
their initial values on a batch of 51 consecutive frames at
a time to fit the entire sequence. We fit 300 iterations for
each batch, which takes around 30 minutes to fit a sequence
around 250 frames on an A100 GPU.

C. Experiment details
Inverted sphere parametrization: Our compositional im-
plicit model consists of a hand model, an object model and
a dynamic background. Following [9, 27], to query a point
(x, y, z) with the background model, we first convert the
point to a quadruple

ρ(x′, y′, z′, 1/r) (6)

where x′2 + y′2 + z′2 = 1 and r =
√
x2 + y2 + z2 > 1.

This quadruple point format is used as the query point for
the background model.
Sampling on a ray: We use error-bounded sampling from
VolSDF by iteratively upsampling z-values within a speci-
fied error bound to obtain 3D points. Sampling stops when
this error is below a threshold. The opacity values of these
points are used to derive the final samples via inverse trans-
form sampling. See VolSDF [24] for details.
HO3D sequences: We use HO3D-v3 [10] to evaluate our
method. The sequences can be found in Table A. Note that
the 3D annotations are not used to train our method; we
only use the RGB raw sequences for training.

To compare with Hampali et al. [11] for in-hand object
scanning, since there is no code released for this method, we



Object Sequence name
35: power drill MDF14
10: potted meat GPMF12
3: cracker box MC1
6: mustard SM2
4: sugar box ShSu12
21: bleach ABF14
25: mug SMu1
19: pitcher base AP13

Table B. HO3D sequences for in-hand object scanning

train HOLD on the same sequences (see Table B). For qual-
itative results, Figure A shows a side-by-side comparison
with Hampali et al. [11] and the ground-truth meshes. Since
Hampali et al. [11] only release the reconstructed objects in
point cloud format, the figure shows a dense point cloud
comparison. Our method captures noticeably more fine-
grained details and fewer artifacts compared to Hampali et
al. [11], and the results are more similar to the ground-truth.
For example, the bottle in the middle has hand-like artifacts
in the Hampali et al. [11] result, while ours does not. This
is due to our compositional implicit model that explicitly
disentangles hands and objects in object reconstruction.
Intrinsics: For evaluation purposes, we use intrinsics from
HO3D; for in-the-wild experiments, we use intrinsics from
SfM. Both intrinsics give reasonable results.
Training details: We train each sequence with Adam [13]
and randomly optimize 10 images from the sequence at each
iteration with the loss:

L = Lrgb + λsegmLsegm + λsdfLsdf

+ λsparseLsparse + λeikonalLeikonal. (7)

During the first 30k iterations, λsegm linearly decays from
1.1 to 0.1; λsdf linearly increases from 0.0 to 1.0. The
eikonal loss weight λeikonal is always 0.00001 and the
MANO prior loss λsdf is always 5.0. To avoid over-
regularization, the eikonal loss is only applied when it is
greater than 8e-4. We use an L1 loss for Lrgb,Lsdf,Lsparse,
and L2 for Lsegm,Leikonal. We apply the sparsity loss Lsparse
for the hand if a given ray’s closest distance to the hand
mesh is beyond 1cm, and for the object if it is beyond 5cm.
At each iteration, we sample 256 points around the hand
surfaces with Gaussian noise using a standard deviation of
0.008, as well as uniformly sample 51 points within a tight
bounding box for hand or object; for the object, we use a
standard deviation of 0.03. We choose these hyperparam-
eters based on qualitative observations for all experiments.
Since hyperparameter tuning is costly, we chose the them
empirically and did not perform extensive tuning.

Ours

Hampali et al.

Ground-truth

Figure A. Comparison with Hampali et al. [11] for in-hand ob-
ject scanning. Our method (top) has significantly more details
and fewer artifacts compared to Hampali et al. [11] (middle) and
our results more closely resemble the groundtruth (bottom).

Loss terms MPJPE [mm] ↓ CDh [cm2] ↓ mIoU [%] ↑
BL 22.1 41.9 83.9
BL + Lmask 22.1 249.0 83.2
BL + Lcontact 22.1 46.8 49.9
BL + Lmask + Lcontact 22.1 9.1 86.3
BL∗ + Lmask + Lcontact 24.9 14.4 87.7
BL∗ + Lmask + Lcontact + Lbio 25.1 13.7 87.1

Table C. Ablation on pose refinement losses. We ablate the effect
of different refinement losses on a baseline (BL) before the refine-
ment. * denotes allowing hand joint rotations to be optimizable.

D. Additional experiments

Ablation on fitting losses: We have experimented with dif-
ferent setups for optimizing hand and object poses. How-
ever, we found the current loss formulation is the most con-
sistent in providing improvements. Table C shows the eval-
uation metrics after fitting a baseline model with different
loss combinations. To measure pixel-alignment for hands
and objects, we use mean interaction-over-union (mIoU)
between the ground-truth segmentation masks and the one
rendered from the optimized hand and object models. For
computational efficiency, here we randomly choose one se-
quence for each object in HO3D to ablate this experiment.
We see that, compared to mask-only, or contact-only fitting,
fitting with both the mask loss Lmask and the contact loss
Lmask is crucial for hand-relative object poses (see CDh)
while maintaining the pixel alignment of hand and object
meshes (see mIoU). In our experiments, we have explored
the possibility of optimizing hand joints during the fitting
procedure, as indicated in experiments marked with an as-
terisk (∗). However, this approach has not yielded consis-
tently improved results in terms of MPJPE. Additionally,
we investigated the integration of a biomechanical loss, de-
noted as Lbio from [23]. Contrary to expectations, this inte-
gration resulted in a deterioration of MPJPE performance.
Consequently, to maintain simplicity and efficacy, we have



Noise Level MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
GT 2.4/20.5 0.5/0.2 97.2/98.5 1.8/16.1
GT + 1× noise 18.4/25.0 0.5/0.4 94.5/96.4 6.0/17.1
GT + 2× noise 38.9/36.6 18.7/6.0 36.1/72.2 62.4/42.4

Table D. Analyze the effect of noise in poses. Given different
noise levels, we compare HOLD before or after pose refinement
(left/right in the table). For all scenarios, object canonical geome-
tries improve after pose refinement (see CD and F10).

decided to adhere to our current loss formulation.
Effect of noise in poses: Table D shows HOLD’s perfor-
mance on HO3D sequences (1 sequence per object) with
various noise levels. The ground-truth (GT) poses (includ-
ing 6D object poses, hand joint angles, and 6D hand ro-
tation and translation) were altered with rotational (ϵrot)
and translational (ϵtransl) noise from Gaussian distributions
N (0, 8◦) and N (0, 16mm), termed “1× noise.” Post-noise,
we refined the poses (see Sec. 3.3 main paper) and trained
HOLD-Net with the new poses and assessed HOLD-Net’s
effectiveness pre- and post-refinement (left/right in the ta-
ble). Noise levels were also increased by 2×. Although
in the main manuscript, we do not optimize hand poses
(only hand translation), here we allow hand poses to be op-
timized for completeness. We see that when the noise in
the poses is relatively low (see GT and “1× noise”), pose
refinement introduces error in hand poses (MPJPE). This
makes sense as our pose refinement only fit hands into sil-
houettes, which is insufficient for improving reasonably ac-
curate poses. However, when the hand poses are extremely
noisy (“2× noise”), the refinement improves the hand poses
in MPJPE. This is also the case for the object’s reconstruc-
tion in the hand coordinate (see CDh) as this metric mea-
sures the spatial alignment between the hand and the object.
Interestingly, across all noise levels, the canonical object ge-
ometries always improve after pose refinement (see CD and
F10) even when ground-truth is used.
Results with random poses: For completeness and to facil-
itate future comparison, Table E shows the results of banana
and scissors sequences from Table A using random object
poses. For the hand poses, we use the same hand pose es-
timator in the main manuscript. For the object poses, we
perturb ground-truth object rotations with Gaussian noise
N (0, 32◦). Intuitively, with a 95.5% chance, rotation noises
fall within the confidence interval [−64◦, 64◦]. To be con-
sistent with HOLD in the main manuscript, we freeze hand
poses during energy-based fitting before the final training.
Segmentation masks: For each sequence, we use SAM-
Track [6] with point-prompting to obtain hand and object
segmentation masks. Obtaining such masks takes around 30
seconds for each sequence (requiring three to five clicks at
the first frame). Table F shows that HOLD performs better
with SAM-Track masks compared to STCN [5].

Sequence MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
BB12 18.9 2.1 82.3 39.8
BB13 19.4 2.1 82.4 77.5
GSF12 21.1 6.7 67.8 46.2
GSF13 19.1 6.9 65.4 63.2
Average† 19.6 4.4 74.5 56.6
Average‡ 23.2 1.3 91.6 21.4

Table E. Random pose performance for banana and scissors.
Results of HOLD using random poses: †Average across the ba-
nana and scissors sequences; ‡Average across sequences here and
in the main manuscript.

MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
STCN 25.0 0.5 95.6 19.0

SAM-Track 24.8 0.3 97.5 14.1

Table F. HOLD performance with different segm. masks.

E. Discussion
In this paper, we present the first method that recon-
structs category-agnostic articulated hands and objects from
monocular videos. Being the first step, ours is not perfect.

First of all, during hand-object interaction, our hands
could heavily occlude the object throughout the entire video
sequence. Also, the object can have self-occlusion. Since
our method relies on RGB supervision from video images,
under-observed regions on the object could potential lead
to artifacts due to the lack of proper regularization. As an
example, Figure B (b) shows that artifact appears when the
right side of the object handle is less observed in a video.
However, there are huge advancement in text-to-3D diffu-
sion priors [17] and they can be used to hallucinate under-
observed object regions. Another aspect is to consider long-
term interaction settings of the same object, which should
provide a full observation of the object in interaction.

Our model relies on detector-based SfM to provide initial
object pose estimates. This is challenging for objects with
uniform or poor texture and for objects with thin structures.
As an example, Figure B (c) shows that SfM struggles with
the two sides of the handle for a kettle sequence due to the
poor texture and symmetric shape of this object, resulting
in an handle-like artifact. Orthogonal to our work, recently
there has been a surge of detector-free SfM models [12, 22]
that can potentially provide object poses in such cases. Fur-
ther, object poses can be noisy due to motion blur and hand-
object occlusion, which could also lead to artifacts. One can
explore correcting the object poses by enforcing a consis-
tency loss with 2D keypoints between consecutive frames.

Our method relies on the MANO skinning weights for
deformation and uses K-nearest neighbours to find corre-
spondences between the observation space and the canon-
ical space. To further increase the realism of the learned
hand model, one can try to learn the skinning weights from
videos and leverage root-finding to find better correspon-



Figure B. Failure cases. In this sequence, the right side of the han-
dle of the object has significantly fewer images for HOLD to learn
its shape. The reconstruction has artifact in the under-observed
side (see b). Also, SfM gets confused by the two sides of the ket-
tle due to its simple texture and creates an artifacts on the object
model (see c).

dences between the observation space and the canonical
space [3, 4]. Moreover, when some hand parts are under-
observed, the hand model tends to have MANO-like shape
for those regions. A direction would be to learn a prior on
realistic hand texture and shape from in-the-lab hand scans.
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