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A. Architecture Details
Our architectures are illustrated in the Tab. 1. For convolu-
tion stem, we apply five 3 × 3 convolutions to embed the
image into 56× 56 tokens. GELU and batch normalization
are used after each convolution except the last one, which
is only followed by batch normalization. 3 × 3 convolu-
tions with stride 2 are used between stages to reduce the
feature map’s resolution. 3 × 3 depth-wise convolutions
are adopted in CPE. Moreover, 5 × 5 depth-wise convolu-
tions are adopted in LCE. RMT-DeiT-S, RMT-Swin-T, and
RMT-Swin-S are models that we used in our ablation exper-
iments. Their structures closely align with the structure of
DeiT [20] and Swin-Transformer [16] without using tech-
niques like convolution stem, CPE, and others.

B. Experimental Settings
ImageNet Image Classification. We adopt the same
training strategy with DeiT [20] with the only supervi-
sion is the classification loss. In particular, our mod-
els are trained from scratch for 300 epochs. We use the
AdamW optimizer with a cosine decay learning rate sched-
uler and 5 epochs of linear warm-up. The initial learn-
ing rate, weight decay, and batch size are set to 0.001,
0.05, and 1024, respectively. Our augmentation settings
are RandAugment [4] (randm9-mstd0.5-inc1), Mixup [26]
(prob=0.8), CutMix [25] (probe=1.0), Random Erasing [27]
(prob=0.25) and Exponential Moving Average (EMA) [17].
The maximum rates of increasing stochastic depth [10] are
set to 0.1/0.15/0.4/0.5 for RMT-T/S/B/L, respectively. For a
more comprehensive comparison, we train two versions of
the model. The first version uses only classification loss as
the supervision, while the second version, in addition to the
classification loss, incorporates token labeling introduced
by [11] for additional supervision. Models using token la-
beling are marked with“*”.

COCO Object Detection and Instance Segmentation.
We apply RetinaNet [14], Mask-RCNN [9] and Cascaded
Mask-CNN [1] as the detection frameworks to conduct
experiments. We implement them based on the MMDe-
tection [2]. All models are trained under two common
settings:“1×” (12 epochs for training) and“3×+MS” (36
epochs with multi-scale augmentation for training). For the
“1×” setting, images are resized to the shorter side of 800
pixels. For the “3×+MS”, we use the multi-scale training
strategy and randomly resize the shorter side between 480
to 800 pixels. We apply AdamW optimizer with the initial
learning rate of 1e-4. For RetinaNet, we use the weight

decay of 1e-4 for RetinaNet while we set it to 5e-2 for
Mask-RCNN and Cascaded Mask-RCNN. For all settings,
we use the batch size of 16, which follows the previous
works [16, 23, 24]

ADE20K Semantic Segmentation. Based on MMSeg-
mentation [3], we implement UperNet [22] and Seman-
ticFPN [12] to validate our models. For UperNet, we
follow the previous setting of Swin-Transformer [16] and
train the model for 160k iterations with the input size of
512× 512. For SemanticFPN, we also use the input resolu-
tion of 512× 512 but train the models for 80k iterations.

C. Finetuning on larger resolution.
To align the model’s receptive field across resolutions, we
adjust γ′ = γresori/resnew . Using native γ, the model
achieves 84.9%. With adjusted γ′ = γ224/384, it achieves
85.2% (Tab. 3).

D. Efficiency Comparison
We compare the inference speed of RMT with other back-
bones, as shown in Tab. 2. Our models achieve the best
trade-off between speed and accuracy among many com-
petitors.

E. Details of Explicit Decay
We use different γ for each head of the multi-head ReSA to
control the receptive field of each head, enabling the ReSA
to perceive multi-scale information. We keep all the γ of
ReSA’s heads within a certain range. Assuming the given
receptive field control interval of a specific ReSA module is
[a, b], where both a and b are positive real numbers. And
the total number of the ReSA module’s heads is N . The γ
for its ith head can be written as Eq. 1:

γi = 1− 2−a− (b−a)i
N (1)

For different stages of different backbones, we use dif-
ferent values of a and b, with the details shown in Tab. 4.



Model Blocks Channels Heads Ratios Params(M) FLOPs(G)

RMT-T [2, 2, 8, 2] [64, 128, 256, 512] [4, 4, 8, 16] [3, 3, 3, 3] 14 2.5
RMT-S [3, 4, 18, 4] [64, 128, 256, 512] [4, 4, 8, 16] [4, 4, 3, 3] 27 4.5
RMT-B [4, 8, 25, 8] [80, 160, 320, 512] [5, 5, 10, 16] [4, 4, 3, 3] 54 9.7
RMT-L [4, 8, 25, 8] [112, 224, 448, 640] [7, 7, 14, 20] [4, 4, 3, 3] 95 18.2

RMT-DeiT-S [12] [384] [6] [4] 22 4.6

RMT-Swin-T [2, 2, 6, 2] [96, 192, 384, 768] [3, 6, 12, 24] [4, 4, 4, 4] 29 4.7
RMT-Swin-S [2, 2, 18, 2] [96, 192, 384, 768] [3, 6, 12, 24] [4, 4, 4, 4] 50 9.1

Table 1. Detailed Architectures of our models.

Model
Params

(M)
FLOPs

(G)
Troughput
(imgs/s)

Top1
(%)

MPViT-XS [13] 11 2.9 1496 80.9
Swin-T [16] 29 4.5 1704 81.3

BiFormer-T [28] 13 2.2 1602 81.4
GC-ViT-XT [8] 20 2.6 1308 82.0

SMT-T [15] 12 2.4 636 82.2
RMT-T 14 2.5 1650 82.4

Focal-T [23] 29 4.9 582 82.2
CSWin-T [5] 22 4.3 1561 82.7
Eff-B4 [19] 19 4.2 627 82.9

MPViT-S [13] 23 4.7 986 83.0
Swin-S [16] 50 8.8 1006 83.0

SGFormer-S [6] 23 4.8 952 83.2
iFormer-S [18] 20 4.8 1051 83.4

CMT-S [7] 25 4.0 848 83.5
RMT-Swin-T 29 4.7 1192 83.6
CSwin-S [5] 35 6.9 972 83.6

MaxViT-T [21] 31 5.6 826 83.6
SMT-S [15] 20 4.8 356 83.7

BiFormer-S [28] 26 4.5 766 83.8
RMT-S 27 4.5 876 84.1

Model
Params

(M)
FLOPs

(G)
Troughput
(imgs/s)

Top1
(%)

Focal-S [23] 51 9.1 351 83.5
Eff-B5 [19] 30 9.9 302 83.6

SGFormer-M [6] 39 7.5 598 84.1
SMT-B [15] 32 7.7 237 84.3

BiFormer-B [28] 57 9.8 498 84.3
RMT-Swin-S 50 9.1 722 84.5

MaxViT-S [21] 69 11.7 546 84.5
CMT-B [7] 46 9.3 447 84.5

iFormer-B [18] 48 9.4 688 84.6
RMT-B 54 9.7 457 85.0

Swin-B [16] 88 15.5 756 83.5
Eff-B6 [19] 43 19.0 172 84.0
Focal-B [23] 90 16.4 256 84.0
CSWin-B [5] 78 15.0 660 84.2
MPViT-B [13] 75 16.4 498 84.3
SMT-L [15] 80 17.7 158 84.6

SGFormer-B [6] 78 15.6 388 84.7
iFormer-L [18] 87 14.0 410 84.8
MaxViT-B [21] 120 23.4 306 84.9

RMT-L 95 18.2 326 85.5

Table 2. Comparison of inference speed.

Model Res Params(M) FLOPs(G) Top1(%)

CSwin-T 384 23 14.0 84.3
iFormer-S 384 20 16.1 84.6

RMT-S 384 27 14.7 84.9
RMT-S’ 384 27 14.7 85.2

Table 3. Finetuning results on larger resolution.
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