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Supplementary Material

A. Derivation of Classification Loss Function
Gradients

In this section, we present the derivation of gradients for the
Mean Squared Error (MSE) and Cross-Entropy (CE) loss
functions during backpropagation. To simplify, we assume
the sample size of 1 and accordingly adjust the notation.
The simplified formulas for MSE and CE are presented as
Equations A and B, respectively.

MSE =

C∑
j=1

(yj − aj)
2 (A)

CE = −
C∑

j=1

yj log(zj) (B)

A.1. Derivation of Mean Squared Error Loss Func-
tion Gradients

The gradient derivation of the MSE loss function is detailed
in Equation C. From this derivation, it can be concluded that
the gradients of the MSE loss function are proportional to
the difference between the decoded values and the labels.

∂MSE

∂aj
= 2(aj − yj) (C)

A.2. Derivation of Cross-Entropy Loss Function
Gradients

The softmax function is shown in Equation D:
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Define k as the index where yk = 1, the gradients of the
CE loss function for j = k is given by Equation E:
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The gradients of the CE loss function for j ̸= k is given
by Equation F:
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Equations E and F can be combined as follows:

∂CE

∂aj
= zj − yj (G)

From this derivation, it can be concluded that the gradi-
ents of the CE loss function are proportional to the differ-
ence between the post-softmax probability values and the
labels.

B. Energy Consumption
The low energy consumption advantage of SNNs mainly
stems from performing accumulation calculation (AC) only
when neurons fire. According to Section 4.3, although our
model includes multiplication and addition (MAC) opera-
tions, such calculations are minimal and rarely occur in our
experiments. Thus, MAC is not considered when evaluat-
ing the energy consumption of SNNs. In non-SNNs, net-
work computations primarily rely on MAC operations. Al-
though there are some AC operations, their limited num-
ber and significantly lower energy consumption compared
to MAC allow us to disregard them for simplicity. In Table
5, this is indicated by placing a greater than sign before the
corresponding energy consumption values. Furthermore, in
accordance with [9], we assume that data for different com-
putations are realized as 32-bit floats in 45nm technology,
with EMAC = 4.6pJ and EAC = 0.9pJ . The formulas for
calculating the energy consumption of SNNs and non-SNNs
are presented as Equations H and I, respectively.

ESNNs = T × fr × EAC ×NAC (H)

Enon-SNNs = T × EMAC ×NMAC (I)

C. More Implementation Details
On the NCAR dataset, to ensure consistent spatial dimen-
sions for all samples, we employ the nearest-neighbor inter-
polation method to resize them to a resolution of 64x64.



Figure A. More visual comparison results on the GEN1 dataset.

On the GEN1 dataset, given the 100 ms duration of
NCAR dataset samples, accordingly, we extract the first 100
ms of each annotated box from this dataset as a sample.
Furthermore, the samples in the GEN1 dataset have a con-
sistent spatial resolution of 304x240. For the evaluation of
the GEN1 dataset, following the criteria established in pre-
vious works [1, 3, 6, 8], we exclude bounding boxes with
side lengths less than 10 pixels or diagonals shorter than 30
pixels.

Prior to each convolutional layer, we add a Batch Nor-
malization (BN) layer [5], recommended by [1] for better
performance and faster convergence. All convolutional lay-
ers are initialized using the He Initialization method [4],

while biases in BN layers are set to 0, and weights are set
to 1. The membrane time constant τ for PLIF neurons [2]
is initialized to 2, with the threshold set to 1. To mitigate
gradient explosion, gradient norms are clipped at a maxi-
mum value of 1. We opt for Atan as the gradient surrogate
function. All model training is executed on a single Nvidia
A40 GPU. Furthermore, considering the class imbalance
between the foreground and background in detection model
training, we employ the Focal Loss [7] as the loss function.
The formula for the Focal Loss can be described as Equation
J (for simplicity, consider the binary classification case). In
this formula, pt as shown in Equation K represents the pre-
dicted probability of a sample belonging to its true category.



αt is a weighting factor for category balancing as shown in
Equation L. Lastly, γ is a hyper-parameter that is adjustable
to fine-tune the behavior of the loss function.

FL = −αt(1− pt)
γ log(pt) (J)

pt =

{
p if y = 1,

1− p otherwise.
(K)

αt =

{
α if y = 1,

1− α otherwise.
(L)

D. More Visualization
In this section, we present more visual comparisons of
our model with DenseNet121-24+SSD [1] and the Ground
Truth across a broader range of scenarios in Figure A,
further demonstrating the robust detection capabilities of
SFOD in event camera object detection.
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