Appendices

A. Details on Supervised Training
A.l. Training Hyper-parameters

Supervised training was conducted on both the real Ima-
geNet training set and various synthetic ImageNet gener-
ated by text-to-iamge models at different dataset scales. To
ensure fair comparisons across different setups, identical
training hyper-parameters were used for both real and syn-
thetic images. Our training approach aligns with the setup
described in [27], utilizing binary cross-entropy loss. The
number of total training iterations and warm-up iterations
were adjusted in proportion to the dataset scale in logarith-
mic space. For instance, models at the 1 million scale were
trained for 95k iterations with a 10k iteration warm-up pe-
riod. At the 2 million scale, training was extended to 190k
iterations with a 20k iteration warm-up, and for the 4 mil-
lion scale, the training and warm-up periods were increased
to 285k and 30k iterations, respectively. More detailed de-
scriptions of the training hyper-parameters are provided in
Table Al.

Table Al. Detailed pre-training hyper-parameters for supervised
training on both real ImageNet training set and synthetic ImageNet
generated by text-to-image models.

Config ‘ Value

Batch size 4096

Optimizer Adam [13]

Learning rate 3x 1073

Weight decay 0.1

Adam 8 B1, B2 = (0.9,0.999)
Total iterations 95k for IM

Warm up iterations 10k for IM

Learning rate schedule cosine decay

Mixup 0.5
Dropout 0.1
Stochastic depth 0.1
Augmentation RandAug(2, 15) [7]

A.2. Details on Text Prompts

In this section, we provide more details on the different con-
figurations of text prompts used for Class-specific Prompts,
as outlined in Section 3.1. For the Classnames + Hyper-
nyms configuration, we utilized all hypernyms associated
with each specific ImageNet category, separated by com-
mas. Regarding CLIP templates, we employed two sets of
prompt templates with different number of sentences. The
first one includes the 80 distinct sentence originally used in
the CLIP paper [22] and its inference code'. The second set

Uhttps://github.com/openai/CLIP/tree/main/notebooks

includes a subset of 7 templates, as recommended in [16].
Additionally, we incorporated two more prompt configura-
tions for comparison, following the approach in [25]: (1)
Classnames + Description + Places, which combines Im-
ageNet class names with their WordNet descriptions, fol-
lowed by a background category sampled from the Places
dataset [32]. (2) Classnames + Hypernyms + Places, which
is similar to the previous configuration but replaces the de-
scriptions with WordNet hypernyms, also incorporating a
background category from Places.

Together with the configurations described in Section 3.1
of the main paper, these methods result in a total of 8 dif-
ferent configurations for text prompts when generating im-
ages for ImageNet categories. Additional visualizations of
images produced by each these prompt configurations are
included in Appendix F.

A.3. Evaluation on Downstream Datasets

In addition to evaluating the trained supervised classifiers
directly, we also conducted linear probing on 15 different
fine-grained classification datasets. Detailed descriptions of
these datasets can be found in Appendix B.2. To perform
linear probing on these datasets, we first removed the linear
classification head from the classifier trained on ImageNet.
Then, we extracted features from both the training and test-
ing sets of each dataset, without applying any data augmen-
tation. Subsequently, logistic regression was employed on
these extracted features. The logistic regression layer was
optimized using L-BFGS, with a maximum number of itera-
tions equals 500. For a detailed comparison of these results,
please refer to Appendix E.

B. Details on CLIP Training
B.1. Hyper-Parameters

Previous studies [19, 22] along with our empirical analysis,
indicate the necessity of using different training parameters
according to dataset scale. Specifically, for smaller-scale
datasets, a larger learning rate and weight decay are rec-
ommended to mitigate overfitting. Conversely, for larger
datasets, both the learning rate and weight decay should be
reduced. Accordingly, we have followed two distinct sets
of hyper-parameters within the CLIP training pipeline, one
tailored for datasets with fewer than 100 million captions
following the parameter in [19], and another for those ex-
ceeding this threshold following the parameter in [22]. The
specific parameters for both configurations are outlined in
Table A3. Models are trained for 32 epochs across all data
scales. The number of warmup steps was set to 600 for the
1 million scale, 1200 for the 2 million scale, and 2000 for
scales of 4 million or greater. It is important to note that
we maintained consistent training hyper-parameters across
all three different types of data sources (synthetic, real, syn-



Table A2. Detailed metrics and number of training and testing images of the downstream classification datasets. Only test images are used

in the zero-shot classification task for CLIP evaluation.

Dataset # Categories # Train Images # Test Images Val Metric

Food-101 [1] 101 75,750 25,250 Top-1 Accuracy
CIFAR-10 [15] 10 50,000 10,000 Top-1 Accuracy
CIFAR-100 [15] 100 50,000 10,000 Top-1 Accuracy
SUN397 [30] 397 19,850 19,850 Top-1 Accuracy
Stanford Cars [14] 196 8,144 8,041 Top-1 Accuracy
FGVC Aircraft [18] 100 6,667 3,333 Mean per class
DTD [5] 47 3,760 1,880 Top-1 Accuracy
Oxford Pets [21] 37 3,680 3,669 Mean per class
Caltech-101 [8] 102 3,060 6,085 Mean per class
Oxford Flowers [20] 102 2,040 6,149 Mean per class
STL-10 [6] 10 1,000 8,000 Top-1 Accuracy
EuroSAT [9] 10 10,000 5,000 Top-1 Accuracy
RESISC45 [4] 45 25,200 6,300 Top-1 Accuracy
GTSRB [26] 43 26,640 12,630 Top-1 Accuracy
Country211 [22, 28] 211 42,200 21,100 Top-1 Accuracy

thetic+real) at the same data scale to ensure fair compar-
isons. For an in-depth comparison of the effects of different
hyper-parameters in CLIP training at different scales, please
refer to the experimental details provided in Appendix H.1I.

Table A3. Detailed pre-training hyper-parameters for CLIP at dif-

ferent dataset scales.

(a) Hyper-parameter for CLIP with < 100M samples.

Config ‘ Value

Batch size 8192

Optimizer AdamW [17]
Learning rate 1x1073

Weight decay 0.5

Adam 3 B1, B2 = (0.9,0.98)
Adam € 1x1078

Total epochs 32

Warm up iterations 600, 1200, 2000
Learning rate schedule cosine decay

(b) Hyper-parameter for CLIP with > 100M samples.

Config | Value

Batch size 32768

Optimizer AdamW [17]
Learning rate 5x 107*

Weight decay 0.2

Adam 3 B1, B2 = (0.9,0.98)
Adam € 1x1076

Total epochs 32

Warm up iterations 2000

Learning rate schedule cosine decay

B.2. Downstream Dataset

For all the pre-trained CLIP models, we conducted zero-
shot evaluations on ImageNet and 15 other widely used

downstream classification datasets. These datasets include
Food-101 [1], Stanford Cars [14], SUN397 [30], Oxford
Pets [21], among others. Detailed information about these
evaluation datasets can be found in Table A2. It’s important
to note that for zero-shot evaluations, only the test images
from these datasets are used.

B.3. Zero-shot Evaluation Details

We employed the same text prompt templates as referenced

n [22], following a similar text ensembling strategy. For
each category, text features were computed for every sin-
gle template, and the mean average of these features across
all templates was used to represent the final text feature for
that specific category. Given that CLIP training involves a
trainable temperature parameter, 7, it is necessary to incor-
porate this parameter during zero-shot evaluation to accu-
rately compute the zero-shot classification loss. Let 2y,
be the image feature from the visual encoder, z;,; denote
the aggregated text feature. Assuming a total of C' classes,
with 25, as the text feature for ¢ — th category, the zero-
shot classification loss is calculated as follows:

exp(sim(Zimg, Ztat.) - T)

ZS:l exp(Sim(zimgy thtc/) : T)

L =—log

Here sim(z;g, 212, ) calculates the dot product, measuring
the similarity between image feature and text features for
each category.

C. Details for Performance at 1.3M

As detailed in Section 4.2 of the main paper, we adopted
54 different configurations encompassing distinct text-to-
image models, CFG scales, and text prompts to generate 1.3
million synthetic images for each configuration. Following
the generation process, a supervised model was trained on
the images geenrated by each configuration. To facilitate a



Table A4. Detailed comparison on ImageNet Validation performance and recognizability, diversity, FID and LPIPS for different CFG scale
and prompt configurations with Stable Diffusion as the text-to-image model.

Text-to-Image Model: Stable Diffusion, main comparison on Prompt Config

CFG Scale | Prompt Config INloss(}) INTopl | Recognizability | Diversity — FID(})  LPIPS(|)

Word2Sen 3.27 38.42 0.315 0.850 3.566 0.717

CLIP Templates (7) 2.63 49.26 0.522 0.781 3.297 0.714

CLIP Templates (80) 2.76 49.88 0.510 0.790 3.437 0.719
Classnames+Hypernym 3.28 45.19 0.569 0.713 2.553 0.698

2 Classnames+Description 3.27 45.05 0.615 0.696 2.678 0.697
Classnames+Hypernym+Places 3.14 4391 0.381 0.836 4.441 0.712
Classnames+Description+Places 3.06 46.18 0.524 0.758 2.890 0.704

Classnames 3.05 47.82 0.603 0.718 2.589 0.702
IN-Captions 2.23 55.04 0.573 0.757 2.450 0.714

CLIP Templates (7) 4.17 38.39 0.702 0.650 5.681 0.731

75 CLIP Templates (80) 3.86 40.26 0.687 0.670 5.619 0.739
’ Classnames 4.96 31.21 0.780 0.541 4.113 0.707
IN-Captions 3.56 40.38 0.725 0.632 3.641 0.737

Table AS. Detailed comparison on ImageNet Validation performance and recognizability, diversity, FID and LPIPS for different text-to-
image models and CFG scales. All configurations use IN-Captions as prompts.

Text Prompt: IN-Captions, main comparison on Text-to-image models

Text-to-Image Model |  CFGScale | INloss(}) INTopl | Recognizability | Diversity — FID(})  LPIPS(})

L5 2.14 54.66 0.484 0.800 2.403 0.710

2 223 55.04 0.573 0.757 2.450 0.714

3 238 54.10 0.655 0.705 2.790 0.722

Stable Diffusion 4 2.61 51.13 0.690 0.675 3.100 0.728
6 2.92 46.99 0.717 0.644 3.483 0.734

7.5 3.56 40.38 0.725 0.632 3.641 0.737

8 3.47 40.87 0.726 0.629 3.655 0.738

10 3.42 33.59 0.730 0.621 3.723 0.740

1 1.84 58.52 0.466 0.810 3.451 0.713

Imagen 1.5 1.78 61.51 0.647 0.719 4.546 0.733

2 1.93 60.58 0.714 0.671 6.867 0.701

0.1 2.05 54.19 0.473 0.789 4.057 0.755

Muse 0.3 2.08 54.45 0.520 0.760 4616 0.749

0.5 2.13 54.03 0.554 0.738 5.189 0.745

1 237 51.55 0.599 0.700 6.274 0.734

clearer comparison in our tables, we have categorized these
54 configurations into three distinct groups, with each group
focusing on specific comparative factors:

The first group exclusively uses Stable Diffusion as the
text-to-image model. The primary comparison focus here
is on the impact of varying text prompt configurations.
The second group standardizes the text prompt configu-
ration to IN-Caption. This group’s aim is to assess the
effects of using different text-to-image models and to
understand the behavior of CFG scales within each spe-
cific model, and to find the optimal CFG scale for each of
them.

* The third group also exclusively uses Stable Diffusion as
the text-to-image model. Here, the comparison emphasis
is on the impact of different CFG scales under different
text prompt configurations.

By grouping the configurations into these three different
groups, we aim to provide a more structured and compre-
hensible analysis. In each of the three groups, we present
the detailed validation loss (the negative log loss here is
used to plot Figure 2 in the main paper) and top-1 accuracy
on ImageNet validation set for models trained with different
configurations, all under the scale of 1.3 million images.

Table A4 presents the analysis for the first group. It



Table A6. Detailed comparison on ImageNet Validation performance and recognizability, diversity, FID(]) and LPIPS(]) for different
text-to-image models and CFG scales. All configurations use Stable Diffusion as the text-to-image model.

Text-to-Image Model: Stable Diffusion, main comparison on CFG Scale

Prompt Config ‘ CFG Scale INloss({) IN Topl | Recognizability | Diversity FID(]) LPIPS({)
1.5 2.84 48.10 0.499 0.778 2.525 0.702
2 3.05 47.82 0.603 0.718 2.589 0.702
3 341 4491 0.697 0.644 2.981 0.704
ClassNames 4 3.80 41.55 0.734 0.602 3.383 0.705
6 4.82 33.58 0.770 0.559 3.897 0.707
7.5 4.96 31.21 0.780 0.541 4.113 0.707
8 5.04 29.78 0.780 0.537 4.167 0.707
10 5.47 26.13 0.787 0.524 4.289 0.707
1.5 3.05 45.84 0.523 0.753 2.468 0.697
2 3.27 45.05 0.615 0.696 2.678 0.697
ClassNames+Description 3 3.87 41.78 0.699 0.627 3.265 0.699
4 4.14 38.92 0.738 0.588 3.714 0.701
6 4.58 33.52 0.762 0.546 4.223 0.703
1.5 3.06 45.22 0.475 0.770 2.463 0.698
2 3.28 45.19 0.569 0.713 2.553 0.698
ClassNames+Hypernym 3 3.70 42.52 0.652 0.643 2.961 0.700
4 4.35 38.02 0.687 0.604 3.336 0.701
6 4.69 33.38 0.717 0.561 3.831 0.703
1.25 2.58 47.59 0.344 0.856 3.193 0.712
1.5 2.61 49.00 0.413 0.831 3.200 0.714
1.75 2.66 49.77 0.468 0.809 3.284 0.717
2 2.76 49.88 0.510 0.790 3.437 0.719
CLIP Templates (80) 3 3.00 48.76 0.600 0.740 4.098 0.726
4 3.27 46.56 0.642 0.711 4.653 0.731
6 3.70 4224 0.677 0.681 5.349 0.736
7.5 3.86 40.26 0.687 0.670 5.619 0.739
1.25 2.57 47.86 0.350 0.851 3.029 0.709
1.5 2.63 49.24 0.424 0.824 3.017 0.711
1.75 2.69 50.20 0.478 0.801 3.116 0.712
2 2.63 49.26 0.522 0.781 3.297 0.714
CLIP Templates (7) 3 307 48.69 0.617 0726 4.025 0.720
4 342 45.93 0.658 0.695 4.661 0.724
6 4.00 41.15 0.692 0.663 5.393 0.729
7.5 4.17 38.39 0.702 0.650 5.681 0.731
1.5 2.14 54.66 0.484 0.800 2.403 0.710
2 2.23 55.04 0.573 0.757 2.450 0.714
3 2.38 54.10 0.655 0.705 2.790 0.722
IN-Captions 4 2.61 51.13 0.690 0.675 3.100 0.728
6 2.92 46.99 0.717 0.644 3.483 0.734
7.5 3.56 40.38 0.725 0.632 3.641 0.737
8 3.47 40.87 0.726 0.629 3.655 0.738
10 3.42 33.59 0.730 0.621 3.723 0.740

shows that using IN-Caption as the text prompt yields the
best performance across both CFG scales of 2 and 7.5.
This superior performance is largely attributed to its abil-
ity to guide the text-to-image model to generate diverse im-
ages while maintaining high recognizability, thereby justi-
fying our choice of IN-Caption for most of our experiments.
In the second group, detailed in Table AS, we observe

that different text-to-image models exhibit varying optimal
CFG scales for image generation to train supervised mod-
els. Specifically, Stable Diffusion, Imagen, and Muse reach
their optimal performance at CFG scales of 2, 1.5, and 0.3,
respectively. These findings validate our decision to em-
ploy these specific CFG scales in our later study of scaling
behavior for each model. Table A6 covers the third group’s
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Figure A1l. Recognizability versus diversity plot for different text-to-image configuration groups as described in Appendix C. Each column
corresponds to one comparison group. The first column mainly compares on text prompts and corresponds to Table A4. The second column
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Figure A4. Recognizability versus diversity, FID or LPIPS plot for all the different text-to-image configurations under 1.3M scale. The
first column corresponds to diversity, while the latter two correspond to FID and LPIPS, respectively. On X-axis we take the negative of
FID and LPIPS. In the plots upper right indicates better metric with higher diversity, lower FID or LPIPS, and higher recognizability. Each
point correspond to one configuration, and is color-coded by either the negative log loss (top row) or the top-1 accuracy (bottom) on the
ImageNet validation set.



comparisons, focusing on finding the optimal CFG scales
for Stable Diffusion under different text prompts. The re-
sults indicate that for text prompts with less diversity, such
as using Classnames or Classnames+Hypernym, a smaller
optimal CFG scale (1.5) is better since it will lead to more
diverse images during the generation process. In contrast,
for more diverse text prompts, like IN-Captions and CLIP
templates with 80 sentences, since there is more diversity
on the text side relativly, a larger optimal CFG scale (2) is
more effective.

In addition, we have included a recognizability versus
diversity plot for each of the three comparison groups in
Figure Al. Each point in these plots represents a specific
configuration, and is color-coded based on either the top-1
classification accuracy or the negative log loss on ImageNet
validation set. The figures illustrate a trade-off between di-
versity and recognizability. Optimal performance is typi-
cally observed when there is a relatively better and more
balanced trade-off between these two factors. Configura-
tions characterized by either low diversity or low recogniz-
ability tend to result in suboptimal performance, indicating
the necessity of maintaining a balance between these two
factors.

D. Evaluation under FID and LPIPS

In addition to diversity, we computed two other key metrics:
FID (Frechet Inception Distance)[12] and LPIPS (Learned
Perceptual Image Patch Similarity)[31]. Both of them are
standard evaluation metrics for the text-to-image generation
models. Our study examines the performance variations in
relation to these two metrics. As detailed in Section 3.2 of
the main paper, these metric scores are also calculated using
the synthetic test sets, which comprises 50, 000 images for
each configuration:

* The FID scores are derived by measuring the Frechet In-
ception Distance [12] between the synthetic test set, con-
taining these 50,000 generated images, and the real Ima-
geNet validation set.

» For LPIPS, we perform the calculation on a per-class ba-
sis. We randomly select and compute the similarity be-
tween 250 pairs of synthetic images for each class, and
the final LPIPS metric is computed as the average across
all classes.

The comparison of FID and LPIPS scores across each group

is presented in Tables A4, A5, and A6. Additionally, in

Figures A2 and A3, we plot a detailed comparison of the

performance across different image generation configura-

tion groups, substituting diversity with either FID or LPIPS.

Considering that lower scores for FID indicate better distri-

bution match and for LPIPS implies larger intra-class diver-

sity, we take the negative of these values for plotting pur-
poses. This adjustment ensures consistency with the diver-
sity plot on the X-axis, positioning better results towards the

right.

Furthermore, we incorporate comparisons using diver-
sity, FID, or LPIPS as the X-axis for all 54 text-to-image
generation configurations in Figure A4. Our findings reveal
that while there is a moderate correlation between the FID
score or LPIPS of generated images and the classification
performance of models trained on them, the relationship is
not definitive. In some cases, configurations with the same
level of recognizability but lower FID scores or LPIPS show
inferior classification performance. This suggests that while
FID and LPIPS are effective metrics for evaluating the qual-
ity of the images generated by text-to-image models, their
correlation with the performance of supervised classifiers
trained on synthetic images is not as strong as expected.
This observation underscores the need for a more specific
metric tailored to evaluate the performance of supervised
classifiers trained on such synthetic images.

E. Detailed Scaling Behavior Comparison

In Tables A7 and A8, we present a comparison of the scaling
behavior of supervised models trained under various con-
figurations. This comparison is based on linear probing per-
formed on 15 fine-grained classification datasets, as detailed
in Appendix A.3. Our findings indicate that, in general, the
scaling behavior observed in linear probing on these down-
stream datasets aligns with the trends seen in the ImageNet
validation set. However, there are instances where training
on synthetic images surpasses the performance of training
on real images, in the Food-101 dataset for example.

Additionally, we have also included the detailed com-
parison on the out-of-distribution (OOD) validation sets,
including ImageNet-A [11], ImageNet-R [10], ImageNet-
Sketch [29], and Imagenet-V2 [23]. The results from these
comparisons demonstrate that training on synthetic images
can yield improved performance on OOD test sets, exem-
plified by the results on ImageNet-R.

F. Visualization on Generated Images

To better understand the impact of various text prompts used
in generating training images, we provide additional visual-
izations of images created using different text prompt con-
figurations for specific ImageNet categories. These visu-
alizations were generated using Stable Diffusion, with the
CFG scale set to 2.

In Figure A6, we present a detailed visualization of the
images generated with different text prompt configurations
for three different ImageNet categories: Goldfish, Golden
Retriever, and shopping carts. The visualizations illus-
trate that incorporating more detailed information into the
prompt tends to encourage the text-to-image model to gen-
erate more diverse images. However, this increased diver-
sity may potentially compromise the accuracy of the cate-



Table A7. Detailed scaling behavior on 15 different downstream classification datasets and ImageNet-A, ImageNet-R, ImageNet-Sketch
and ImageNet-V2 validation set for supervised classifiers trained with real images from ImageNet training set and synthetic images from
various configurations using Stable Diffusion. Dataset scale is in million.

Food-101
CIFAR-10
CIFAR-100
SUN397

Cars

Aircraft

DTD

Pets
Caltech-101
Flowers
STL-10
EuroSAT
RESISC45
GTSRB
Country211
DS Average
ImageNet-A
ImageNet-R
ImageNet-Sketch
ImageNet-V2

Scale

Real ImageNet Training set

0.125 | 61.4 80.6 609 473 240 310 647 772 734 867 880 958 874 570 120|632 | 26 146 57 363
025 ] 655 852 662 527 300 377 677 833 81.0 888 925 958 880 61.0 119 |67.1| 3.6 196 102 451
05| 710 897 725 576 442 434 702 888 872 921 960 958 89.8 652 124|717 | 58 273 17.6 557
11770 947 80.0 63.1 573 516 728 926 928 934 981 96.0 905 708 139|763 | 156 403 294 66.7
13778 946 81.0 643 625 531 740 935 934 934 98.6 96.1 900 71.7 144|772 | 187 422 312 68.8

Stable Diffusion, CFG scale=7.5, Classname

0.125 | 56.4 758 54.1 432 247 315 619 731 654 839 813 947 846 538 94 |596| 1.7 154 68 206
025 |59.1 779 56.7 439 287 357 61.1 750 672 845 84.0 944 847 579 97 |614| 1.8 169 81 216
05]602 794 588 465 319 376 645 777 734 847 871 953 863 61.1 103|637 | 2.1 196 102 234
1612 827 614 477 356 394 621 79.0 730 856 874 949 865 622 103|646 | 25 225 131 252
21617 826 614 489 385 393 636 794 738 856 879 944 86.6 641 105|652 | 26 249 152 258
41615 833 622 486 359 405 632 80.1 762 847 8.0 940 861 626 105|652 | 3.1 260 163 258
8621 838 634 485 388 397 639 796 764 832 895 938 865 633 106|655 | 2.7 273 165 262

16 | 61.2 83.1 629 490 363 403 624 794 771 839 894 935 86.6 665 10.7|655| 33 278 18.0 272

32 1612 844 638 496 368 386 640 789 766 828 8.5 938 86.0 639 105|654 | 3.1 282 179 262
64 | 61.8 838 637 493 373 385 624 803 769 826 898 938 86.0 642 107|654 | 32 289 18.0 269

Stable Diffusion, CFG scale=2.0, Classname

0.125 | 61.2 732 51.6 46.6 256 334 628 760 682 854 841 951 866 549 99 |61.0| 24 179 66 223
025|651 775 567 51.1 336 386 662 823 764 886 874 951 8.0 572 102|649 | 29 239 108 287
05 ] 695 807 612 546 469 460 683 869 836 906 915 953 894 606 11.1|69.1| 33 31.7 165 338
11725 849 659 588 551 506 708 89.1 87.1 919 944 960 901 643 120|722 | 50 410 23.0 39.1
21741 869 675 599 558 521 709 888 87.8 91.7 953 947 897 69.1 123|731 | 6.6 457 272 422
41754 87.1 684 602 572 521 712 89.0 892 91.8 958 953 89.6 673 12.1 | 734 | 79 492 29.6 443
81763 883 694 608 605 535 71.8 895 899 922 965 947 89.8 680 125|742 | 80 504 31.0 449

16 | 764 88.6 699 61.6 595 539 726 882 892 91.8 967 945 90.1 675 128|742 | 86 518 314 456
321767 888 71.1 61.7 570 51.7 720 89.7 889 923 966 944 89.6 67.7 129|741 | 9.0 519 321 46.
64 | 76.6 882 69.6 61.7 585 53.0 720 89.6 89.8 919 966 950 90.1 681 129|742 | 94 525 324 46.0

Stable Diffusion, CFG scale=2.0, CLIP Templates(80)

0.125 | 60.4 704 485 451 249 326 631 730 673 864 831 952 865 509 98 |598 | 24 185 76 196
025|640 745 537 494 322 378 651 805 753 880 867 954 872 564 10.1 | 638 | 2.7 290 148 274
05| 67.6 796 587 540 427 452 68.1 868 846 903 91.0 951 889 605 10.1 | 682 | 3.1 403 244 335
1717 851 655 586 536 50.1 706 880 888 926 947 960 893 654 113|721 | 5.1 529 335 404
21750 878 693 618 61.0 551 726 903 909 937 965 954 903 685 120|747 | 75 619 39.7 451
41763 89.7 719 629 633 553 743 91.8 923 943 966 949 O91.1 689 128 | 758 | 95 664 426 474
81769 90.1 71.6 63.0 617 562 739 907 91.0 935 967 951 89.6 67.6 124|753 | 105 675 438 487

16 | 772 89.7 72.1 630 635 56.0 738 909 913 920 970 945 897 676 124|754 | 108 688 443 493
321775 902 719 626 625 563 735 90.8 915 932 966 949 899 678 123|754 | 114 69.0 445 492
64 | 775 905 731 628 61.6 557 735 909 91.8 930 972 947 90.1 673 12,6 | 755 | 11.5 693 447 496

Stable Diffusion, CFG scale=2.0, IN Caption

0.125 | 595 713 492 457 226 316 595 735 645 843 826 950 86.1 483 98 |589| 23 139 50 225
025 | 63.1 757 546 503 267 366 646 810 730 869 880 951 86.7 554 103|632 | 30 191 81 295
05]676 798 585 541 383 417 666 866 804 900 912 958 884 60.7 109|674 | 44 257 128 36.7
11719 843 642 588 483 49.1 698 892 864 91.1 948 955 894 607 119|710 | 72 357 195 453
21760 880 689 624 575 514 722 905 886 930 966 955 904 o645 130|739 | 10.1 438 259 50.7
41772 888 692 625 562 540 720 90.7 894 928 968 952 90.0 645 13.0 | 742|125 484 286 527
8781 889 704 636 563 537 713 906 905 931 972 947 904 660 134|746 | 140 505 309 542

16 | 783 895 714 638 564 522 729 908 898 923 973 950 895 660 134|746 | 157 514 30.7 5438
32 | 787 899 718 64.1 588 53.6 720 912 904 918 973 951 898 66.6 139|750 | 159 524 315 548
64 | 784 89.8 709 64.1 589 534 73.0 914 907 923 973 945 897 674 137|750 | 160 532 322 550




Table A8. Detailed scaling behavior on 15 different downstream classification datasets and ImageNet-A, ImageNet-R, ImageNet-Sketch
and ImageNet-V2 validation set for supervised classifiers trained with synthetic images from various configurations using Imagen and

Muse. Dataset scale is in million.
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Imagen, CFG scale=2.0, IN Caption
0.125 | 585 719 50.7 457 22,6 315 598 788 657 844 839 949 847 526 11.0|598 | 2.7 156 49 29.1
025 | 61.8 783 56.8 50.1 287 363 639 843 746 864 898 946 853 546 11.1 |638| 32 222 94 356
05| 666 819 61.1 548 384 434 66.1 881 80.1 895 934 954 86.1 582 113|676 | 42 29.0 13.7 424
11713 863 668 596 495 503 69.6 909 859 900 960 954 830 613 126|716 | 79 394 196 51.1
21738 90.0 709 602 502 521 680 909 872 89.7 972 951 863 620 129|724 | 119 450 232 550
4751 902 718 615 495 537 69.1 912 87.8 896 974 947 87.1 628 13.0|73.0 | 142 497 271 576
8750 912 728 620 524 517 675 91.7 880 883 98.1 950 864 62.1 134 |73.0| 164 510 273 587
Muse, CFG scale=2.0, IN Caption

0.125 | 58.3 76.6 549 453 205 29.6 620 732 66.6 848 875 952 833 522 107|600 | 27 168 6.8 234
025 | 633 841 635 502 270 359 653 803 765 875 925 955 853 594 112|652 | 36 254 132 305
051|670 87.0 68.1 540 373 424 677 851 822 89.1 945 955 864 648 114|688 | 46 327 198 364
1712 913 728 589 48.1 47.6 704 872 870 921 968 954 872 669 11.8| 723 | 7.7 433 279 44.1
21739 920 743 603 49.7 493 706 894 876 91.0 97.1 946 873 679 127|732 | 122 488 327 484
41749 929 744 607 514 51.0 71.1 89.6 884 915 977 947 869 683 12.6 | 73.7 | 144 520 348 50.3
8753 917 733 61.1 514 519 705 89.6 877 91.6 98.1 935 869 66.1 128 | 734 | 157 532 356 510

gory of interest in the generated images.

G. More per-class analysis
G.1. Recognizablity Distribution

To delve deeper into how recognizability and diversity are
distributed across the 1000 ImageNet classes and their influ-
ence on scaling ability (k), we categorized all classes into
10 different groups based on their scaling ability, ranging
from lowest to highest. For each group, we calculated the
average recognizability and diversity of the classes within
it. The result of this analysis is illustrated in a detailed bar
plot in Figure AS.

The analysis reveals the following trend: as the scaling
ability of a group increases, the average diversity initially
rises and then begins to decrease. This trend suggests that at
the initial stages, enhanced diversity contributes to the gen-
eration of more varied synthetic images, helping the super-
vised classifier to learn more robust features during training.
However, beyond a certain point, further increases in diver-
sity can be harmful, potentially compromising the accuracy
of the generated images or leading to the omission of key
objects or the generation of wrong concepts.

In contrast, the average recognizability consistently in-
creases as scaling ability increases, indicating a stronger
correlation between the scaling ability and recognizability
for each class. This consistent improvement shows the sig-
nificance of recognizability as a more relevant metric for

class-based analysis.
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Figure AS. Per class analysis on the changes in recognizability
and diversity as the scaling ability (k) increases. Here we divide
the 1000 ImageNet classes into 10 groups based on their scaling
ability ranging from the lowest to the highest.

G.2. More Results on ‘Scaling’ Classes

In Figure A7, we provide a detailed comparison of the scal-
ing behavior for models trained on either real or synthetic
images from Stable Diffusion, specifically focusing on the
‘scaling’ classes as described in Section 4.6. Additionally,
Figure A8 presents visualizations of synthetic images gen-
erated for these classes, using the same setup as described



(a) Classnames
goldfish Golden Retriever

\

shopping cart

(b) Classname + Description
goldfish, Carassius auratus, small golden or Golden Retriever, an English breed having a shopping cart, a handcart that holds gro-
orange-red freshwater fishes of Eurasia used long silky golden coat ceries or other goods while shopping
as pond or aquarium fishes

) N o ] &.’ »
(c¢) Classname + Description + Places
goldfish, Carassius auratus, small golden or Golden Retriever, an English breed having a shopping cart, a handcart that holds gro-

orange-red freshwater fishes of Eurasia used long silky golden coat inside gas station ceries or other goods while shopping inside
as pond or aquarium fishes inside ice skating basketball court

rink

(d) Classname + Hypernym
Golden Retriever, retriever

cart

goldfish, Carassius auratus, cyprinid inside Golden Retriever, retriever inside amuse- shopping cart, handcart, pushcart, cart, go-
ice skating rink ment park cart inside airfield

(f) Word2Sen
The golden retriever on a run

(g) CLIP templates
A close-up photo of a Golden Retriever

(h) IN-Caption
Golden Retriever, a dog is running on the shopping cart, a street with a garbage can
grass and a cart

Figure A6. Synthetic images generated by Stable Diffusion with different text prompt configurations on three ImageNet categories:
goldfish, Golden Retriever, and shopping cart. All of these visualizations use a guidance scale of 2.0.
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Figure A7. More comparison on supervised models trained on real and synthetic images (from Stable Diffusion), for the ‘Scaling’ classes.
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Figure A8. Visualizations of the synthetic images generated for ‘Scaling’ classes, using Stable Diffusion with a guidance scale of 2.0.
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Figure A9. More comparison on supervised models trained on real and synthetic images (from Imagen), for the ‘Scaling’ classes.

African elephant

Figure A10. Visualizations of the synthetic images generated for ‘Scaling’ classes, using Imagen [24] with a guidance scale of 1.5.
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Figure A11. More comparison on supervised models trained on real and synthetic images (from Muse), for the ‘Scaling’ classes.
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Figure A12. Visualizations of the synthetic images generated for ‘Scaling’ classes, using Muse [2] with a guidance scale of 0.3.




in Section 4.6.

We further explore ’Scaling’ classes for supervised clas-
sifiers trained on images generated by the Imagen and Muse
models. The scaling behaviors of these classes, in compar-
ison to models trained with real images, along with their
visualizations, are presented in Figure A9, Figure A 10, Fig-
ure All and Figure A12. Our analysis reveals that cer-
tain classes, such as sweatshirts, exhibit consistently good
scaling across different text-to-image models. Meanwhile,
there are classes that show particularly strong scaling per-
formance with specific text-to-image models.

For the ten ‘scaling’ classes selected in Stable Diffusion,
we observed that models trained on synthetic images exhibit
scaling abilities that are comparable to, and in some cases
even superior to, those trained on real images. A notable ex-
ample can be seen in the ‘bighorn sheep’ and ‘spotlight’ cat-
egories, where models trained on synthetic images already
outperform those trained on real images at dataset scales be-
low 1 million, and this advantage continues to grow as the
scale increases, since there are only 1.3M real images.

This finding suggests that for certain concepts, text-to-
image models are indeed capable of generating images that
are more conducive to train supervised classifiers effec-
tively. As text-to-image models continue to improve, we
anticipate that such instances will become more frequent.
Eventually, it’s plausible that models trained on synthetic
images could surpass the performance of those trained on
real images across the entire ImageNet validation set.

G.3. More ‘Poor’ Classes

In Table A9, we identify and list ‘poor’ classes where super-
vised models, trained on synthetic images, face challenges
in accurate classification. For each of the three text-to-
image models — Stable Diffusion, Imagen, and Muse — we
highlight 40 distinct categories that pose difficulties. No-
tably, certain categories, such as tiger cats and vine snakes,
are common challenges across different text-to-image mod-
els. Future research in the development of text-to-image
models could benefit from focusing on these categories. Im-
proving the accuracy in generating images of these ‘poor’
classes is crucial, as their current limitations are a key fac-
tor hindering the ability of synthetic images to have better
scaling ability and performance than real images, in the su-
pervised learning contexts.

G.4. What affects Scaling Ability

When we fix the generation configuration of specific text-
to-image model, CFG scales and prompts as described in
Section 3.1, text-to-image models could still exhibit vary-
ing degrees of recognizability and diversity when gener-
ating images for different object classes. To explore how
these factors influence the scaling ability of each class, we
conducted an analysis focusing on the correlation between

— p=-0.06

— p=029

Scaling Ability

04 05 06 0.7 08 09 0.0 02
Diversity

0.4 0.6 0.8 1.0
Recognizability

Figure A13. Per class analysis on the relationship between scaling
ability (k in Equation 2) and both diversity and recognizability.
Within each class, the plots indicate a positive correlation between
recognizability and scaling ability. The correlation between diver-
sity and scaling ability appears to be negligible.

scaling ability and both recognizability and diversity, all
computed for each class individually. These correlations,
and their implications for scaling efficiency, are depicted in
Figure A13. Our analysis underscores the potential positive
role of recognizability in determining the scaling ability for
the synthetic images, for each specific class, generated by
text-to-image models. We identified a positive correlation
between recognizability and scaling ability, indicating that
the precision in generating the intended class significantly
enhances the scaling effectiveness of synthetic images. In
contrast, the influence of diversity within each class seems
to be more limited. Our findings reveal only a negligible
correlation between diversity and scaling ability. This might
be attributed to the increased noise introduced when com-
puting diversity for specific categories, as opposed to the
overall dataset.

G.5. Per-class FID and LPIPS

Following the same setup outlined in Section G.4 of the
main paper, we also computed the correlations between
scaling ability (k in Equation 2 of the main paper) and both
FID and LPIPS scores. Unlike the previous analysis focus-
ing on recognizability and diversity, this evaluation specif-
ically studies the relationship of scaling ability with these
two metrics.

To calculate the per-class LPIPS scores, we used the
same method as detailed previously. However, for per-class
FID computation, the existing synthetic test sets, containing
only 50 images per class, were deemed insufficient, since
FID score is sensitive to the number of images. Therefore
we sample 1300 images from the synthetic training images
and compute the FID with images from real ImageNet train-
ing set for each class. Similar to our previous approach,
we took the negative of the per-class FID and LPIPS scores
for consistency, as lower scores indicate better performance.
The correlations obtained are depicted in Figure A14.

The results from this figure indicate a lack of strong cor-
relation between scaling ability and either FID or LPIPS



Table A9. Lists of ‘poor’ classes that has poor scaling ability and performance. Supervised models trained with synthetic images struggles
in classifying them correctly. We list 40 categories for Stable Diffusion, Imagen and Muse, respectively.

(a) Stable Diffusion

fire salamander Appenzeller Sennen- | tiger cat collie Australian Terrier

hund
African bush ele- | cassette player canoe European green | night snake
phant lizard
mushroom eastern  hog-nosed | hot tub wall clock crayfish

snake
espresso machine water jug toy terrier Brittany dog keyboard space bar
shower curtain gymnastic horizontal | African rock python | letter opener ladle

bar
tape player tea cup paper towel wok flute
vine snake black-footed ferret cricket insect European polecat cradle
Lakeland Terrier green mamba cleaver breastplate monitor

(b) Imagen
kit fox shower curtain night snake hot tub minivan
desktop computer keyboard space bar European green | espresso machine black-footed ferret
lizard
water jug flute velvet fabric mobile phone digital clock
product packet / | CRT monitor eastern  hog-nosed | tape player bolete
packaging snake
tobacco shop monastery purse mushroom printer
letter opener wall clock toilet paper monitor sunglasses
overskirt hard disk drive ladle can opener tiger cat
combination lock paper towel plunger tights vine snake
(c) Muse
titi monkey alligator lizard European green | cottontail rabbit African rock python
lizard

stopwatch gar fish Irish Water Spaniel European polecat CRT monitor
toy terrier keyboard space bar night snake Norfolk Terrier Ibizan Hound
mobile phone ground beetle Tibetan Terrier Norwich Terrier purse
Treeing Walker | Siberian Husky eastern  hog-nosed | Bouvier des Flandres | patas monkey
Coonhound snake dog
Australian Terrier CD player Briard Affenpinscher English Setter
cradle red wolf or maned | Geoffroy’s spider | Border Terrier Lakeland Terrier

wolf monkey
tape player Cairn Terrier Bluetick Coonhound | Entlebucher Sennen- | Redbone Coonhound

hund

scores. This finding highlights the necessity for a more tai-
lored metric that is specifically designed to assess the scal-
ing ability of supervised classifiers trained on synthetic im-
ages.

H. More Results on CLIP Scaling

H.1. Comparison on Hyper-parameters

In Table A3, we detail the use of two distinct sets of hyper-
parameters for CLIP training, tailored to different dataset

scales. Config (a) in the table, labeled as ‘S’ here, is de-
signed for smaller dataset scales with fewer than 100 mil-
lion images. Conversely, config (b), represented as ‘L’ here,
is intended for larger dataset scales equal to or exceeding
100 million images. To validate the necessity of these con-
figurations, we present an empirical study in Table A10.

Here we train CLIP models on subsets of the LAION-
400M dataset with 10M, 50M, and 100M samples, exclu-
sively utilizing real images and applying the two different
hyper-parameter sets. Our findings indicate that for scales



Table A10. Comparison of CLIP models trained on LAION-400M subsets of different data scales, using different hyper-parameter con-
figurations. Hyper-parameter configuration ‘S’ and ‘L’ corresponds to (a) and (b) in Table A3, respectively. All models are trained on real
images and text only, using ViT-B/32 as backbone architecture.
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oM S 695 889 686 584 673 69 434 754 857 499 933 469 541 411 9.6 | 573|518
L 72.6 894 680 576 726 7.1 410 809 873 559 938 364 523 415 104 | 57.8 | 54.2
Table A11. Comparison of CLIP models trained on synthetic CC12M generated by Stable Diffusion with different CFG scales. Models
are trained using ViT-B/16 as backbone architecture.
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Figure A14. Per class analysis on the relationship between scaling
ability (defined ask in Equation 2 in the main paper) and both FID
and LPIPS. Within each specific class, the plots indicate the cor-
relation between the scaling ability and both metrics appears to be
negligible.

of 10M and 50M, the ‘S’ hyper-parameter configuration
yields superior results, with the performance difference be-
ing reduced at the SOM scale. In contrast, at the 100M scale,
the ‘L’ configuration demonstrates enhanced performance.
Therefore, based on these empirical results, we opted to uti-
lize the ‘S’ hyper-parameter set for smaller data scales and
the ‘L’ set for larger scales.

H.2. Comparison on different CFGs

To identify the most effective CFG scale for generating syn-
thetic images to train CLIP models, we utilized the Sta-
ble Diffusion to create synthetic images for the CC12M
dataset [3] at four different CFG scales: 1.25, 1.5, 1.75,
and 2.5. Following the generation of these images, CLIP
models were trained using the synthetic images and their
corresponding texts. The efficacy of these trained models
was then evaluated through zero-shot classification on Ima-
geNet and various downstream classification datasets.

The detailed comparison of these different CFG scales
are presented in Table A11. Based on these results, we de-
termined that a CFG scale of 1.5 delivers the best zero-shot
classification performance on ImageNet. Consequently, we
chose CFG= 1.5 for the majority of our CLIP experiments.

H.3. Detailed experiment results for all scales

Table A12 provides detailed scaling behavior for CLIP
models trained utilizing either synthetic, real, or a combina-
tion of synthetic and real images. We also present the scal-
ing behavior comparison in detailed plots for each specific
downstream dataset in Figure A16. Figure A15 shows the



Table A12. Zero-shot transfer performance on 15 downstream datasets and ImageNet. Models are trained on LAION-400M subsets with
images from synthetic, real or synthetic+real. Dataset scale starts from 1M and increase exponentially. Combining synthetic images and
real images can improve zero-shot classification performance under various cases, especially when data amount is limited.
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Syn+Real 54.5 829 53.1 463 573 51 296 614 782 31.1 925 296 41.1 145 6.5 45.6 40.7
Syn 442 324 115 416 513 49 274 583 721 248 83.6 167 295 46 5.9 33.9 37.7
16M Real 629 852 58.1 490 60.6 50 304 619 81.5 409 93.1 432 394 280 74 49.8 43.8
Syn+Real 64.8 87.5 61.0 53.7 633 49 365 677 828 38.6 945 37.6 482 28.6 8.2 51.9 48.2
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Syn+Real 714 894 653 579 69.7 6.5 41.8 729 832 413 952 387 551 299 10.2 55.2 52.9
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Syn+Real 74.6 90.8 67.8 61.1 733 63 50.2 763 878 476 958 455 583 375 11.6 59.0 56.4
Syn 63.7 451 159 523 67.1 93 378 757 805 39.1 932 80 357 10.1 95 429 51.2
128M Real 819 905 709 625 787 107 460 859 887 604 960 483 57.8 427 14.2 62.3 61.4
Syn+Real 81.6 91.0 704 64.0 794 119 525 851 902 595 97.0 473 61.1 453 14.1 63.4 62.9
Syn 68.6 462 21.8 547 704 109 429 802 81.5 446 952 202 39.1 128 10.5 46.6 54.4
256M Real 84.6 928 735 665 824 123 527 899 913 657 969 392 644 473 169 65.1 65.4
Syn+Real 83.8 924 733 66.0 823 146 550 86.7 914 586 97.8 477 652 425 153 64.8 65.4
Syn 70.1 519 262 555 708 123 415 79.6 83.6 455 957 288 393 206 109 48.8 55.7
371M Real 857 939 756 675 833 142 50.1 888 91.1 67.0 970 439 66.6 428 17.5 65.7 66.8
Syn+Real 84.6 924 732 67.1 820 172 568 864 91.7 61.6 973 522 659 46.7 16.0 66.1 66.6

CLIP Scaling on Downstream Average
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Figure A15. The average scaling behavior on zero-shot classifi-
cation for CLIP models over all 15 downstream datasets. Models
are trained on LAION-400M subsets with synthetic, real, or syn-
thetic+real images.

average scaling behavior over all 15 downstream datasets.
The models were trained on subsets of the LAION-400M
dataset, beginning with 1 million samples and scaling up ex-
ponentially to the entire set of 371M. Our findings indicate
synthetic images does not scale as good as real onees, yet
integrating synthetic images with real images in the train-
ing of CLIP models can be advantageous, particularly in
scenarios where the dataset size is relatively limited.
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