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1. Details for Theoretical Analysis
1.1. Monotonicity between Distributional Concen-

tration and Semantic Ambiguity

Here, we first present the detailed proof for the following
proposition:

Proposition 1. Let ζx be the continuous entropy of the pos-
terior vMF distribution parametrized by µ̃x ∈ Sd−1 and
κ̃x ∈ Rd

>0. We have ζx(κ̃x) behave as a monotonically
decreasing function in the interval (0,+∞).

Proof. For any vMF distribution characterized as q(z|x) ∼
vMF(µ̃x, κ̃x), its continuous entropy can be derived as:

Hq(z|µ̃x,κ̃x) = Eq[− log(Cd(κ̃x) exp(κ̃xµ̃
T
xz))]

=−
∫
Sd−1

[logCd(κ̃x) + κ̃xµ̃
T
xz]q(z)dz

=− (
d

2
− 1) · log κ̃x + log Id/2−1(κ̃x)

−
Id/2(κ̃x)

Id/2−1(κ̃x)
· κ̃x + (d/2) log 2π.

(1)

The derivation is based upon the vMF properties that
‖µ̃x‖ = 1 and Eq(z) = Ad(κ̃x) · µ̃x, where Ad(κ̃x) =
Id/2(κ̃x)

Id/2−1(κ̃x)
. It is noted that Hq(z) is a univariate function

of κ̃x, regardless of µ̃x. We thereby model the derivative
of the continuous entropy with respect to the distributional
concentration parameter κ̃x:

∂Hq(z|µ̃x, κ̃x)

∂κ̃x
= ∇κ̃x [−(

d

2
− 1) · log κ̃x+

log Id/2−1(κ̃x) + (d/2) log 2π]−∇κ̃x [
Id/2(κ̃x)

Id/2−1(κ̃x)
· κ̃x]

=
Id/2(κ̃x)

Id/2−1(κ̃x)
−∇κ̃x [

Id/2(κ̃x)

Id/2−1(κ̃x)
] · κ̃x −

Id/2(κ̃x)

Id/2−1(κ̃x)

∝ κ̃x · [
Id/2(κ̃x) · (Id/2−2(κ̃x) + Id/2(κ̃x))

I2d/2−1(κ̃x)
−
Id/2+1(κ̃x)

Id/2−1(κ̃x)

− 1],

(2)

which is always negative for ∀ d ∈ (1,+∞) and κ̃x ∈
(0,+∞) given the properties of modified Bessel functions
[9].

The proposition provides a theoretical foundation for our
method, which aims to model the latent bias incurred by
inconsistent imaging protocols across cohorts with the dis-
tributional concentration parameter. In this sense, the task-
irrelevant interference attributes can be well characterized
and decoupled from the informative semantic context. The
above derivations also hold true for the KL divergence reg-
ularization term in Eq. (7) of the main text, in which the
mathematical formulation is analogous to the continuous
entropy. The monotonicity indicates that the statistical pa-
rameter κ̃x can behave as an instance-adaptive scaling fac-
tor to dynamically rectify the weight of each instance ac-
cording to its semantic ambiguity. The formulation delivers
a heuristic solution to compensate for the latent bias issued
from non-i.i.d. data aggregated from numerous cohorts.

1.2. Towards Bounded Open Space Risk with Uni-
form Proxies

In our proposed method, we specifically devise open
space structuring with uniform proxies defined a priori to
organically shape the geometric layout of embedding man-
ifold and regulate the open space risk associated with novel
classes. We hereby prove its effectiveness towards a tighter
error bound for novel class positioning and discrimination.

Lemma 2. Let Υ̂ = {υ̂1, ..., υ̂n} denote a set of prox-
ies uniformly distributed on a unit hyperspherical manifold
Sd−1. Assume η = d

n ∈ (0, 1) as n→∞, then we have for
the smallest singular value λmin of Υ̂ that:

lim
n→∞

λmin(Υ̂) ≥ (1−√η) · (min
i

√
d

‖r̂i‖
), (3)

where r̂i are i.i.d. N(0, 1) random variables.

The proof can be derived from [16]. Then, we consider the
instance adjacency estimation procedure, which identifies



the instance pairs holding strong semantic correlations ac-
cording to the following distributional overlap metric:

OΥ̂
x = {Cd(κ̃x) exp(κ̃xµ̃

T
x υ̂i),∀υ̂i ∈ Υ̂}. (4)

The error rate of distributional overlap measurement and
subsequent instance pairing determines the efficacy of
Eq. (11) in the main text and is therefore in consonance with
the open space risk. Specifically, we represent the estimated
error for distributional overlap score with least squares er-
ror as: Π(OΥ̂

x ) = 1
2NU

∑NU
i=1(ŷi − OΥ̂

x )2, where ŷi is the
expected estimation. Afterwards, we can obtain its partial
derivative with respect to the proxy placement as:

∂Π(OΥ̂
x )

∂Υ̂
=

1

NU

NU∑
i=1

(OΥ̂
x − ŷi) · C̃ exp(κ̃xµ̃

T
xΥ̂), (5)

where C̃ denotes the normalization constant. By integrat-
ing C̃ exp(κ̃xµ̃

T
xΥ̂) in their matrix form as M, we can then

reformulate the equation to characterize the error of distri-
butional overlap measurement as:

π(OΥ̂
x ) =

1

NU

NU∑
i=1

(OΥ̂
x − ŷi) =

1

M
· ∂Π(OΥ̂

x )

∂Υ̂
, (6)

‖π(OΥ̂
x )‖ ≤ 1

λmin(M)
· ‖∂Π(OΥ̂

x )

∂Υ̂
‖. (7)

Combined with Lemma 2, the error associated with instance
pairing and open space structuring can be well-bounded
when Υ̂ holds spatial uniformity over the hyperspherical
manifold.

2. Experimental Setup Details
2.1. Datasets

2.1.1 Pneumonia Infectious Organisms

With the rapid emergence of COVID-19, there has been a
significant surge in interest and efforts to facilitate funda-
mental research in the field of pneumonia with the advance-
ment of radiology. Besides vanilla discrimination between
normal and infected patients, exactly identifying the respon-
sible infectious microorganisms, such as viruses or bacte-
ria, could bring clinical benefits for patient management
and symptom explanation [5]. In this regard, we consider
the discovery scenario aimed at recognizing and grouping
pneumonia incurred by unseen microorganisms according
to the anatomical and pathological information present in
X-rays.

Specifically, we adopt MDTD [11] and COV-iDC [4] as
the base and unlabeled sets of data, respectively. MDTD
contains 5,863 chest X-ray images collected from retrospec-
tive cohorts of pediatric patients in a Chinese hospital. The

Table 1. Statistics of the datasets for novel biomedical concept dis-
covery. The total numbers of instances belonging to base and novel
sets of classes are separately presented.

Pneumonia Cell Nuclei Skin Lesion Retinopathy

Base 3,220 244,831 2,368 14,547
Novel 80 4,508 232 488

radiographs are firstly categorized by whether the patients
are infected with pneumonia, and then the positive ones are
annotated with their infectious organisms (viral pneumo-
nia). COV-iDC accumulates the public data available from
the Internet and formalizes a database comprising two new
classes of pneumonia infectious microorganisms, bacterium
and fungus. It also suggests a fine-grained categorization
schema in which pneumonia patients are further differenti-
ated with their specific subclasses, leading to in total eight
classes, including Normal, COVID-19, SARS, MERS-CoV,
Streptococcus, Klebsiella, Legionella, and Pneumocystis.
Notably, data distribution shifts intrinsically exist across the
two sets of data due to different imaging device and archiv-
ing procedure across hospitals and countries. Additionally,
in COV-iDC, the number of patients infected by the two
novel classes of pneumonia is much fewer than the patients
corresponding to base classes, which conforms to our ar-
gument. The quantitative comparisons of caseload between
base and novel sets of classes are shown in Table 1.

2.1.2 Cell Nuclei

In the biological system of multicellular organism, cells
would become specialized to perform different functions
according to the regulation of genetic information contained
in nuclei. The rich information exhibited by the struc-
tural architecture and morphological characteristics of nu-
clei conveys essential clues for tissue microenvironment
profiling and disease analysis [1]. We therefore propose to
evaluate the effectiveness of our method towards discover-
ing novel classes of nuclei autonomously, to verify its po-
tential to accelerate fundamental biomedical research.

In particular, we adopt PanNuke [7] and Lizard [8] as the
base and unlabeled datasets, respectively. PanNuke is com-
posed of 189,744 annotated nuclei obtained from digitalized
pathology specimens across various organs, where the nu-
clei can be generally categorized into three types: epithelial,
inflammatory, and connective. Lizard comprises a total of
495,179 nuclei acquired from colon tissue. Compared with
PanNuke, it introduces two novel classes of nuclei: neu-
trophil and eosinophil. From the fine-grained perspective,
Lizard is principally encompassing nine subclasses of cells:
neoplastic, non-neoplastic epithelial, lymphocyte, plasma,
neutrophil, eosinophil, fibroblasts, muscle, and endothelial
cells. We use all images from the breast tissue in PanNuke



and the DPath set of data in Lizard to ensure evident data
distribution discrepancy.

2.1.3 Skin Cancer Lesions

Here, we consider the discovery of another biomedical con-
cept, i.e., lesions, which corresponds to an abnormal region
suffering injury or disease. We evaluate our method towards
novel lesion discovery on a large-scale miscellaneous skin
lesion benchmark [3] consisting of more than 10k dermato-
scopic images. We select two sets of data which are col-
lected from different body locations (lower extremity and
face) and exhibit significant visual difference and evident
distribution shifts. The face dataset is adopted to formulate
the base class set with three typical lesion types: benign ker-
atinocytic lesions, melanocytic nevi, and melanomas. Then,
the lower extremity dataset is considered as the unseen class
set, which incorporates four novel categories of skin le-
sions: vascular lesions, dermatofibromas, basal cell car-
cinomas, and actinic keratoses intraepithelial carcinomas.
Those novel classes to be discovered are intrinsically rare
and much fewer in case amount than the common ones, with
up to 100× discrepancy in overall quantity.

2.1.4 Diabetic Retinopathy Severity

All the above tasks can be technically recognized as a classi-
fication problem where different classes independently ex-
ist and do not retain mutual correspondence. In this ex-
periment, we conduct evaluations on a different technical
scenario, ordinal regression, for which the variables to be
predicted are only informative in the context of the relative
ordering between different values.

Specifically, we consider the discovery of undefined lev-
els of diabetic retinopathy severity. The severity of dia-
betic retinopathy can be exhibited by the pathological tissue
changes in the retina and behaves as a fundamental indica-
tor for the potential risks of vision loss and blindness. In
this vein, we adopt two retina image datasets DDR [13] and
APTOS [10] acquired with fundus photography which cap-
ture diabetic retinopathy under a variety of severity levels.
We utilize DDR as the base set, with three standard levels
of severity: no symptom, mild, and moderate. APTOS is
then adopted as the unlabeled set comprising two uncom-
mon severity degrees: severe and proliferative, which are
regarded as the novel classes.
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