
Appendix of Test-Time Linear Out-of-Distribution Detection

1. Structure of Appendix

In this supplementary we will
• Provide necessary lemmas for the proof.
• Give details of the omitted proof in the main paper.
• Present detailed experiment settings.
• Make further analyses of our experiments, including tests

of linear relation, qualitative examples, experiment under
different OOD rates and so on.

• List the full experiment results on every OOD datasets.

2. Necessary Lemmas

Definition 1. A random variable with X expectation µ is
Sub-Gaussian with parameter ν2 means:

log(E[exp(λ(X − µ))]) ≤ λ2ν2

2
(1)

Lemma 2. Suppose ϵ is a n-dimensional vector of i.i.d zero
mean sub-Gaussian variables with parameter ν2. For any
vector w, w⊤ϵ is sub-Gaussian of parameter ∥w∥22ν2

Proof. By independence, we have

E[exp(λw⊤ϵ)] = E[exp(λw1ϵ1 + · · ·+ λwnϵn)]

= E[exp(λw1ϵ1) · · · exp(λwnϵn)]

= E[exp(λw1ϵ1)] · · ·E[exp(λwnϵn)]

≤ exp(λ2(w2
1 + · · ·+ w2

n)ν
2/2)

= exp(λ2∥w∥22ν2/2)

(2)

Lemma 3. Suppose ϵ is a zero-mean n-dimensional vector
of sub-Gaussian of parameter ν2(no need to be i.i.d), we
have:

P(max
i

ϵi > t) ≤ n exp(− t2

2ν2
) (3)

Proof.

P(max
i

ϵi > t) = P(λmax
i

ϵi > λt)

= P(exp(λmax
i

ϵi) > exp(λt))

≤ E[exp(λmaxi ϵi)]

exp(λt)

≤
∑n

i=1 E[exp(λϵi)]
exp(λt)

≤ n exp(ν2λ2/2− λt)

(4)

Set λ = t
ν2 we finish the proof.

3. Proof of Theorem
We slightly generalized Theorem. 1 in main paper. Let
si, zi and ϵi denote the predicted OOD score, extracted
feature and prediction error of the ith example, we have
si = z⊤i β + ϵi, where ϵi are independent and identically
distributed (i.i.d.) among different samples. We further as-
sume that:
(C1: Ground-Truth Ranking) The ground-truth score can
perfectly rank two set A,B with a margin t > 0, which
means z⊤i β > z⊤j β+t for all i ∈ A, j ∈ B. Where A∩B =
∅ and A ∪B = Ω, Ω is the set of all samples.
(C2: Sub-Gaussian Error) The error ϵ follow a sub-Gaussian
distribution SubGau(0, ν2) with zero mean and parameters
ν2, where ν is not too larege.

Denote β̂ as the fitted β of linear regression. We have

Theorem 4 (Ranking Recovery of RTL). Denote r as the
rank of the feature matrix Z and n as the sample number. If
the ratio of the margin to error strength t/ν follow:

t/ν > min{2
√
2log(n/δ), 2

√
2r log(2r/δ)},

with at least probability 1 − δ, z⊤i β̂ rank all samples from
A over samples from B.

Proof. Due to assumption C1, we have mini∈Az
⊤
i β >

maxj∈Bz
⊤
j β+t. Without loss of generality, we can assume

mini∈Az
⊤
i β > t/2 and maxj∈Bz

⊤
j β < −t/2, which is

equivelant to z⊤i β > t/2 for all i ∈ A and z⊤j β < −t/2 for
all j ∈ B.
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Write in the form of a matrix, we have S = Zβ + ϵ,
where Z ∈ Rn×d,S, ϵ ∈ Rn×1,Z,S and ϵ as the fea-
tures, base OOD detector’s scores and prediction errors of
examples. Here n is the total sample number while d is the
feature dimension. By linear regression, we have

β̂ =
(
Z⊤Z

)†
Z⊤S =

(
Z⊤Z

)†
Z⊤(Zβ + ϵ)

=
(
Z⊤Z

)†
Z⊤Zβ +

(
Z⊤Z

)†
Z⊤ϵ,

(5)

and

Zβ̂ = Z
(
Z⊤Z

)†
Z⊤Zβ +Z

(
Z⊤Z

)†
Z⊤ϵ

= Zβ +Z
(
Z⊤Z

)†
Z⊤ϵ,

(6)

Where
(
Z⊤Z

)†
denote the Moore-Penrose General-

ized Inverse of Z⊤Z and the last equality is due to
Z

(
Z⊤Z

)†
Z⊤Z = Z, which we will prove later. If

∥Z
(
Z⊤Z

)†
Z⊤ϵ∥∞ < t/2, due to the assumption C1, we

can conclude that Zβ̂ rank all samples from A over samples
from B. Then we divide the proof into two parts:
Part I, t/ν > 2

√
2log(n/δ)

In fact we can only deal with a single side inequality to keep
the ranking,

max
i
{−sign(z⊤i β)[Z

(
Z⊤Z

)†
Z⊤ϵ]i} < t/2, (7)

where [·]i denote the i-th element of vector and sign denote
signum function that returns the sign of a real number.

First, we check that −sign(z⊤i β)[Z
(
Z⊤Z

)†
Z⊤ϵ]i is

a sub-Gaussian variable with paramter ν2. Recall SVD
decomposition, we have Z = UΣV ⊤, where U ∈
Rn×r,V ∈ Rd×r and Σ ∈ Rr×r. U⊤U = Ir,V

⊤V =
Ir, where r is the rank of the feature matrix Z. Then we
have

Z⊤Z = V ΣU⊤UΣV ⊤ = V Σ2V ⊤(
Z⊤Z

)†
= V Σ−2V ⊤,

(8)

Further we have(
Z⊤Z

)†
Z⊤Z = V Σ−2V ⊤V Σ2V ⊤

= V V ⊤
(9)

Z
(
Z⊤Z

)†
Z⊤Z = UΣV ⊤V V ⊤

= UΣV ⊤ = Z
(10)

Z
(
Z⊤Z

)†
Z⊤ = UΣV ⊤V Σ−2V ⊤V ΣU⊤

= UU⊤
(11)

Therefore

−sign(z⊤i β)[Z
(
Z⊤Z

)†
Z⊤ϵ]i = −sign(z⊤i β)u

⊤
i U

⊤ϵ,
(12)

where u⊤
i denote the i-th row of U .

Calculate the 2-norm we have:

∥−sign(z⊤i β)u
⊤
i U

⊤∥22 = ∥u⊤
i U

⊤∥22 = u⊤
i U

⊤Uui

= u⊤
i ui ≤ 1,

(13)

the last equality is due to the property of incomplete SVD
decomposition. By lemma 2 −sign(x⊤

i β)u
⊤
i U

⊤ϵ is a sub-
Gaussian variable with paramter ν2. Direct applying lemma
3 we have:

P(max
i
{−sign(z⊤i β)u

⊤
i U

⊤ϵ} ≥ t/2) ≤ n exp(− t2

8ν2
).

(14)
When t/ν > 2

√
2log(n/δ) we get:

P(max
i
{−sign(z⊤i β)u

⊤
i U

⊤ϵ} ≥ t/2) ≤ δ. (15)

Part II, t/ν > 2
√
2rlog(2r/δ)

Using the definition of operator norm, we get

∥Z
(
Z⊤Z

)†
Z⊤ϵ∥∞ = ∥UU⊤ϵ∥∞ ≤ ∥U∥∞∥U⊤ϵ∥∞

(16)
where ∥U∥∞ is the ∞-operator norm of U and ∥U⊤ϵ∥∞
is the vector ∞-norm. Due to some basic linear algebra
we know that ∥U∥∞ is the maxium ℓ1 norm of the row
maxi∥u⊤

i ∥∞. Using the mean-inequality we have

∥u⊤
i ∥∞ =

r∑
j=1

|uij | = r

∑r
j=1 |uij |
r

≤ r

√∑r
j=1 |uij |2

r
≤
√
r,

(17)

for every i, thus ∥UU⊤ϵ∥∞ ≤
√
r∥U⊤ϵ∥∞. Therefore

P(
√
r∥U⊤ϵ∥∞ < t/2)≤P(∥UU⊤ϵ∥∞ < t/2) (18)

and

P(∥UU⊤ϵ∥∞ ≥ t/2) ≤ P(∥U⊤ϵ∥∞ ≥
t

2
√
r
) (19)

It is easy to see [U⊤ϵ]i is a sub-Gaussian vector with
paramter ν2, and U⊤ϵ is a r-dimensional random vector,
we have

P(∥UU⊤ϵ∥∞ ≥ t/2) ≤ P(∥U⊤ϵ∥∞ ≥
t

2
√
r
)

≤ 2r exp(− t2

8ν2r
)

(20)

when t/ν > 2
√
2rlog(2r/δ),

P(∥UUϵ∥∞ ≥ t/2) ≤ δ

Therefore conclude the proof.



When A = {In-distribution Samples}, and V =
{Out-of-distribution Samples}, this is just Theorem. 1 of
main paper. Note that our theorem not only applies to
ranking satisfy the ground-truth ranking assumption for in-
distribution and out-of-distribution data, but also applies to
the case when the ranking are nearly ground-truth ranking.
The ranking equality of z⊤β puts a upper bound on the ef-
ficacy RTL, but with high probability, the z⊤β̂ produced by
our RTL can perform as good z⊤β and outperform the raw
OOD score s = z⊤β + ϵ.

We further prove another lemma which describe the tail
distribution of mixture of two Sub-Gaussian Variables.

Lemma 5. The mixture of two Sub-Gaussian of
SubGau(0, a2) and SubGau(0, b2) is still a Guassian
Mixture with parameter max{a2, b2}

Proof.

E[exp(λ(π1SubGau(0, a2) + π2SubGau(0, b2)))] =

π1E[exp(λ(SubGau(0, a2)))]

+ π2E[exp(λ(SubGau(0, b2)))]

≤ π1 exp(
λ2a2

2
) + π2 exp(

λ2b2

2
) ≤ exp(

λ2 max{a2, b2}
2

)

(21)

Since the tail distribution of mixture of two Sub-
Gaussian variables is mainly decided by the variable with
larger parameter, directly applying RTL will be difficult
when errors follow π1SubGau(0, ν21) + π2SubGau(0, ν22),
where π1 + π2 = 1, π2 is very small but ν2 ≫ ν1. To
deal with this problem, RTL++ introduced subset selection
to filter large error predictions.

4. Experiments Setting

Algorithm 1: Subset selection of RTL++

1 Input: features zi and OOD score si, 1 ≤ i ≤ n,
2 Normalize zi to unit Euclidean norm
3 Apply dimensionality reduction on zi to d≪ n
4 Stack zi and si by rows to Z and S

5 Calculate projection Z̃ = I− Z(Z⊤Z)†Z⊤ and
S̃ = Z̃S

6 Solving Lasso γ̂ = argminγ
1
2∥S̃− Z̃γ∥22 + λ∥γ∥1

7 Select a subset Ẑ with the lowest p% of |γ̂i|.
8 return Ẑ

For all results except for changing the percentile of cho-
sen data in RTL, we set the regularization λ = 1e−5 for CI-
FAR and λ = 1e− 7 for ImageNet. For CIFAR, we choose
percentile p = 80%. For ImageNet we choose p = 90%

Algorithm 2: Online RTL

1 Input: an OOD score function S : X → R, batch
size b, numbers of batch m

2 Initialize: A← 0, b← 0
3 for k = 1, · · · ,m do
4 Sample b images xi, 1 ≤ i ≤ b;
5 Calculate the features of all images zi = g (xi);
6 Calculate the OOD score of all images

ŝi = S (xi);
7 Stack zi and ŝi by rows to Z and S ;
8 A← A + Z⊤Z;
9 b← b + Z⊤S;

10 β̂ = (A)†b;
11 Compute calibrated OOD score of the present

batch si = zTi β̂;
12 end
13 Using si as the OOD score.

Figure 1. More Visualization of Canonical-Correlation Analysis
of ImageNet and two OOD datasets’ features(Places and Texture)
and OOD scores.

for MSP and ODIN, p = 95% for energy and KL. For ex-
periments on CIFAR-10 and CIFAR-100, we directly use
the feature of the penultimate layer of Wide ResNet-40. On
ImageNet-1k, we further apply principal component analy-
sis to the output of penultimate layer of ResNetv2-101, to
reduce the dimension of feature to 32 in the subset selec-
tion procedure of RTL++ in Alg. 1. For GMM model on
CIFAR-10 and CIFAR-100, we use Gaussian mixtures of
10 and 100 components respectively, and each component
has its own general covariance matrix. For GMM model
on ImageNet-1k, a Gaussian Mixture of 1000 components
with diagonal covariance matrix is used. The log-likelihood
of each sample is used as an OOD score. For local outlier
factor model, we set number of neighbors to 20. For Isola-
tion Forest, the number of base estimators is set to 100.

5. Further Experiments Analysis

In this section, we carry out additional experiments of RTL
to prove the efficacy of our methods.



In-distribution
O
ut-of-distribution

success
O
ut-of-distribution

failure

Figure 2. Qualitative examples

Test of Linear Relation between features and scores.
Visualization of Canonical-Correlation Analysis of various
OOD detection algorithms and benchmark datasets, includ-
ing Textures and Places, are displayed in Fig 1. We test the
linear relationship between features and score in Tab. 1 with
ImageNet-1k as in-distribution dataset, based on the signif-
icance test of the first canonical correlation. Our test is built
on Wilks’ Λ, and use the F-approximation of Λ as our statis-
tics. For details of the test, please refer to chapter 11 of [2].
The tests show that the first canonical correlation is signif-
icant, which imply the linear relation between features and
scores.
Qualitative examples. We display some qualitative exam-
ples in Fig. 2. Note that, as Eq. 1 in our main paper, larger
score means more ID (In-Distribution). We draw some ex-
amples with scores before/after RTL in each title. In the
first row, RTL can boost the scores of in-distribution data
by training on the entire dataset. In the second row, it tends
to correctly decrease scores for OOD images that have lit-
tle semantic similarity with ID data. However, in the third
row, some OOD instances such as plants or scenes that have
similar backgrounds to ID data may lead RTL to falsely in-
crease their scores and result in failure.
Revision Under different out-of-distribution rates. On
CIFAR-10 and CIFAR-100, we tried to change the rate of
out-of-distribution data for OOD detection and apply our
RTL. The rate of OOD data varies from 10% to 90% in
Tab. 2, with spacing 10%. We report ∆FPR and ∆AUROC,
where ∆L := (L with RTL)−(L without RTL). We fix the
total number of data at 5000. Every experiment is repeated
10 times and the average is used as the final results. We find
that using MSP or energy as base OOD detectors, our linear
revision succeeds in bringing some improvements even with
60% to 80% of OOD data. When the rate of OOD data gets
too large, our proposed linear revision may instead worsen
the results. This is because when there is a too small number

of in-distribution, it is hard to capture the rich information
of in-distribution data. However, this is still astonishing be-
cause our methods still work when OOD data account for
the most part of the observations. Such scenarios violate
the assumption of classical outlier detection methods. We
argue that this is because we utilized the information of pre-
trained classifiers. Even if in-distribution data compose of
a smaller part of dataset during OOD inference, OOD de-
tectors tend to produce larger scores for in-distribution data
and lower scores for OOD data, and linear regression will
keep this tendency.
Revision Under different sample number Still on CI-
FAR, we keep the rate of in-distribution data and out-of-
distribution data at 5:1, then change the number of in-
distribution from 10000 to 10 in Tab. 3. It is worth noting
that we repeat more rounds when the total sample number
is small to get more accurate estimations. Let’s denote m as
the number of in-distribution data fed in the test time. We
correspondingly repeat 105

m rounds. We find that when num-
ber of test data is too small (around the dimension of fea-
ture, note that the penultimate layer of Wide ResNet-40 of
CIFAR is 128-dimensional), our algorithms will produce no
revision because it fits the OOD score perfectly. When the
number of data grows, our linear revision may first decease
AUROC. However, our algorithm consistently improves the
results when there are more than 500 in-distribution sam-
ples.
Extend the results with multiple OOD datasets. Because
all the above experiments are carried out on single datasets
then we take average over all datasets, we wonder if our
methods work when multi out-of-distribution domains are
simultaneously given. We carry out experiments on large-
scale OOD detection, fix the ImageNet-1k validation set as
in-distribution. The OOD data are all the combinations of
iNaturalist, Places, SUN and Texturs datasets (shorted as
NPST). The results are visualized in Fig. 3. We find that
RTL, as a linear calibration, can improve results on all com-
bination of the given four datasets.
Comparison with ReAct. There are some recently pro-
posed methods to improve OOD detection. The most rel-
evant among these methods is the post-processing method
ReAct [3], which rectifies the OOD scores based on the in-
ternal feature activation patterns. In Tab. 4, our RTL out-
performs ReAct when using both MSP and ODIN as base
OOD detectors. More interestingly, ReAct and RTL are
complementary and can sometimes achieve better perfor-
mance when combined.
Results on Noises. In many cases, detecting random noise
is more challenging than detecting data from a disjoint
dataset. We test two kinds of random noise: uniform noise
on [0, 1] and gaussian noise with µ = 0.5 truncated in [0, 1].
Although noise based OOD is challenging for ordinary post
hoc OOD detector, it is not a problem for RTL as shown in



OOD Dataset Method Wilks’ Λ Statistics df1 df2 p-value < 0.01

iNaturalist

MSP 0.5333 24.76 2048 57951 ✓
energy 0.3816 45.86 2048 57951 ✓
ODIN 0.4039 41.77 2048 57951 ✓
KL 0.3816 45.86 2048 57951 ✓

Places

MSP 0.6074 18.29 2048 57951 ✓
energy 0.4106 40.63 2048 57951 ✓
ODIN 0.4459 35.17 2048 57951 ✓
KL 0.4106 40.63 2048 57951 ✓

SUN

MSP 0.5905 19.63 2048 57951 ✓
energy 0.3895 44.34 2048 57951 ✓
ODIN 0.4264 38.06 2048 57951 ✓
KL 0.3895 44.34 2048 57951 ✓

Textures

MSP 0.6373 14.89 2048 53591 ✓
energy 0.4579 30.98 2048 53591 ✓
ODIN 0.4897 27.27 2048 53591 ✓
KL 0.4579 30.98 2048 53591 ✓

Table 1. Test of Linear Relationship based Wilks’ Λ, where statistics is the F-approximation of Wilks’ Λ and df1 and df2 is the degree of
freedom for F-distribution. ImageNet-1k is used as in-distribution dataset

Dataset CIFAR-10 CIFAR-100
Method MSP Energy MSP Energy

OOD Percent ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑

0.1 -38.58 6.08 -12.26 2.33 -23.09 7.66 -8.93 -0.34
0.2 -36.85 5.55 -14.57 3.11 -27.33 8.28 -13.86 2.04
0.3 -34.71 4.79 -15.02 3.28 -28.39 8.16 -16.57 3.02
0.4 -33.06 4.09 -15.35 3.35 -28.06 7.64 -18.19 3.59
0.5 -30.89 3.36 -15.15 3.33 -26.57 6.94 -19.10 3.90
0.6 -28.53 2.59 -14.76 3.20 -24.78 6.11 -19.66 3.98
0.7 -25.89 1.71 -14.28 3.00 -22.32 4.95 -20.11 3.82
0.8 -22.21 0.50 -12.67 2.56 -18.13 3.15 -18.84 3.09
0.9 -14.89 -1.66 -9.80 1.36 -9.92 -0.62 -13.84 0.63

Table 2. Results under different OOD rates

Tab. 5.
Results on Natural Adversarial Examples. The domain
shift between in and out-of-distribution data is relatively
large for ImageNet OOD detection benchmark. Recently,
natural adversarial examples ImageNet-O [1] have been in-
troduced as a hard out-of-distribution dataset. We test of our
RTL on ImageNet-O with ImageNet as in-distribution data
in Tab. 6. Though our RTL could not achieve improvement
as significant as results on the ordinary ImageNet bench-
mark, our method can help the base OOD detectors to make
more precise predictions.



Dataset CIFAR-10 CIFAR-100
Method MSP Energy MSP Energy

In number OOD number ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑ ∆FPR↓ ∆AUROC↑

10000 2000 -38.87 6.11 -14.70 3.04 -28.52 8.79 -12.84 1.46
5000 1000 -37.95 5.88 -14.62 3.00 -27.32 8.45 -12.59 1.40
2000 400 -35.34 5.23 -13.92 2.91 -23.95 7.43 -11.41 1.19
1000 200 -31.70 4.17 -12.87 2.71 -19.17 6.02 -9.74 0.91
500 100 -25.23 2.22 -11.08 2.35 -12.83 3.84 -7.33 0.48
200 40 -11.30 -2.43 -6.00 1.26 -3.19 0.17 -2.59 -0.10
100 20 0.04 -4.90 0.34 -0.08 0 0 0 0
50 10 0 0 0 0 0 0 0 0
20 4 0 0 0 0 0 0 0 0
10 2 0 0 0 0 0 0 0 0

Table 3. Results under different total numbers
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Figure 3. Results of Combination of Datasets



Method ReAct RTL FPR↓ AUROC↑

MSP

no no 76.98 79.28
no yes 46.84 86.71
yes no 70.19 81.73
yes yes 67.83 81.98

ODIN

no no 72.99 82.56
no yes 53.28 85.68
yes no 63.64 84.49
yes yes 48.85 87.97

Table 4. ImageNet-1k with ReAct.

Method Noise FPR↓ AUROC↑

MSP Uniform 99.60 89.13
Gaussian 99.77 88.08

MSP+RTL Uniform 0.01 99.50
Gaussian 0.01 99.34

ODIN Uniform 99.14 90.12
Gaussian 99.56 89.15

ODIN+RTL Uniform 7.05 97.29
Gaussian 15.38 96.73

Table 5. ImageNet-1k with Noise as OOD data.

FPR ↓ AUROC↑ AUPR ↑

MSP 94.30 61.69 89.25
MSP+RTL 87.20 67.33 90.55

Energy 94.70 67.86 91.40
Energy+RTL 86.50 72.69 92.55

ODIN 94.90 67.31 91.23
ODIN+RTL 86.45 72.27 92.41

KL 94.70 67.86 91.40
KL+RTL 86.50 72.69 92.55

Table 6. ImageNet-1k with ImageNet-O as OOD data.



6. ImageNet results with AUPR

Dataset iNaturalist SUN
metrics FPR95 AUROC AUPR FPR95 AUROC AUPR

MSP 63.69 87.59 97.23 79.98 78.34 94.45
+RTL 21.03 94.98 98.71 50.68 87.14 96.61
+RTL++ 18.76 95.60 98.90 48.40 88.70 97.17

Energy 64.91 88.48 97.58 65.33 85.32 96.57
+RTL 45.48 91.04 97.96 52.06 88.68 97.38
+RTL++ 41.57 92.03 98.22 49.84 89.32 97.61

KL 64.91 88.48 97.58 65.32 85.31 96.57
+RTL 45.48 91.04 97.96 52.06 88.68 97.38
+RTL++ 41.57 92.03 98.22 49.84 89.32 97.61

ODIN 62.69 89.36 97.76 71.67 83.92 96.26
+RTL 35.27 92.87 98.35 51.59 88.40 97.25
+RTL++ 36.10 92.78 98.33 51.87 88.23 97.21

GradNorm 50.03 90.33 97.83 46.48 89.03 97.29
GMM 87.90 68.43 90.26 89.99 63.29 88.72
LOF 95.16 51.57 83.87 94.89 52.27 84.04
IF 88.58 61.60 87.92 90.12 57.85 86.09

Dataset Places Textures
metrics FPR95 AUROC AUPR FPR95 AUROC AUPR

MSP 81.44 76.76 94.15 82.73 74.45 95.65
+RTL 57.22 84.48 95.94 58.48 80.24 96.30
+RTL++ 56.72 85.32 96.21 59.98 79.91 96.25

Energy 73.02 81.37 95.49 80.87 75.79 96.05
+RTL 62.68 84.35 96.14 69.49 75.39 95.47
+RTL++ 62.37 84.05 96.03 70.44 76.52 96.00

KL 73.02 81.37 95.49 80.87 75.79 96.05
+RTL 62.68 84.35 96.14 69.49 75.39 95.47
+RTL++ 62.37 84.05 96.03 70.44 76.52 96.00

ODIN 76.27 80.67 95.35 81.31 76.30 96.12
+RTL 60.71 84.44 96.11 66.72 76.78 95.70
+RTL++ 61.35 84.28 96.07 67.06 76.58 95.64

GradNorm 60.86 84.82 96.26 61.42 81.07 96.96
GMM 96.85 52.83 84.54 95.37 35.34 83.83
LOF 93.05 56.37 85.64 82.02 65.39 92.77
IF 93.45 50.24 83.02 54.34 87.76 98.27

Table 7. Detailed Experiments on ImageNet-1k with AUPR



7. Detailed Results On CIFAR-10

Dataset Textures SVHN Places365
Method FPR AUROC AUPR FPR AUROC AUPR FPR AUROC AUPR

MSP 59.50 88.37 97.16 48.98 91.86 98.26 60.32 88.08 97.08
+RTL++ 27.35 91.89 97.33 11.24 95.91 98.46 31.49 93.22 98.32
+RTL 20.83 94.56 98.43 10.47 96.71 98.96 29.86 93.46 98.40

Energy 52.33 85.36 95.48 35.49 91.15 97.72 40.16 89.75 97.25
+RTL++ 34.74 88.52 95.97 10.28 97.38 99.32 35.82 91.33 97.76
+RTL 36.75 87.23 95.44 14.64 95.73 98.80 37.55 90.76 97.64

Odin 49.62 84.57 95.14 32.88 92.11 98.03 57.14 84.23 95.73
+RTL++ 53.33 77.01 91.57 27.00 88.96 95.87 55.31 84.24 95.71
+RTL 60.74 72.08 89.53 27.18 89.31 96.10 63.96 80.08 94.40

KL 52.34 85.36 95.48 35.49 91.15 97.72 40.17 89.75 97.25
+RTL++ 34.69 88.53 95.98 10.29 97.39 99.32 35.74 91.33 97.76
+RTL 36.74 87.23 95.44 14.67 95.74 98.80 37.55 90.75 97.63

GradNorm 73.59 57.90 83.12 59.49 70.21 89.45 78.38 60.51 86.99
GMM 60.24 83.07 95.80 98.01 23.62 70.12 80.85 79.14 94.97
IF 99.35 21.64 70.19 78.71 67.98 89.67 91.94 55.09 85.27
LOF 96.90 45.94 80.20 92.86 57.39 86.12 98.62 52.92 84.58

Dataset LSUN-C LSUN-R iSUN
Method FPR AUROC AUPR FPR AUROC AUPR FPR AUROC AUPR

MSP 30.95 95.63 99.13 52.23 91.49 98.17 56.24 89.80 97.73
+RTL++ 0.50 99.83 99.96 2.08 99.51 99.89 8.33 98.17 99.57
+RTL 0.18 99.92 99.98 3.73 99.19 99.82 8.75 98.19 99.59

Energy 8.31 98.34 99.65 27.75 94.15 98.65 33.84 92.51 98.23
+RTL++ 0.56 99.81 99.94 5.79 98.81 99.74 9.69 97.98 99.55
+RTL 1.44 99.61 99.89 7.05 98.58 99.69 10.62 97.87 99.54

Odin 15.90 96.98 99.33 26.63 94.58 98.77 32.45 93.29 98.48
+RTL++ 39.79 84.25 94.56 17.82 94.81 98.53 21.46 94.14 98.40
+RTL 37.13 85.77 95.23 19.65 94.32 98.41 18.96 95.08 98.69

KL 8.31 98.34 99.65 27.75 94.15 98.65 33.84 92.51 98.23
+RTL++ 0.56 99.81 99.94 5.81 98.81 99.74 9.67 97.98 99.55
+RTL 1.42 99.61 99.89 7.02 98.58 99.69 10.62 97.87 99.54

GradNorm 12.07 96.85 99.18 65.27 73.38 92.06 70.27 71.07 91.41
GMM 96.12 46.31 80.17 95.84 58.68 89.29 95.10 58.88 89.14
IF 59.47 82.96 95.11 71.85 76.06 93.43 78.44 71.09 91.75
LOF 97.62 51.69 83.89 94.21 65.72 90.49 94.64 65.04 90.08

Table 8. Details of Experiments On CIFAR-10



8. Detailed Results On CIFAR-100

Dataset Textures SVHN Places365
Method FPR AUROC AUPR FPR AUROC AUPR FPR AUROC AUPR

MSP 83.55 73.67 93.07 84.00 71.44 92.89 82.30 74.03 93.30
+RTL++ 57.25 80.62 93.02 44.29 84.18 94.93 76.63 76.16 93.53
+RTL 64.26 78.55 92.87 56.75 78.72 93.42 75.19 76.47 93.59

Energy 79.32 76.40 93.70 85.43 73.96 93.62 80.11 75.80 93.59
+RTL++ 69.14 74.68 91.39 63.51 77.91 93.67 77.56 75.87 93.51
+RTL 70.08 73.51 91.29 64.85 78.73 94.23 80.46 73.55 92.84

Odin 79.57 73.43 92.81 87.73 65.43 90.95 87.14 72.00 92.67
+RTL++ 69.01 76.09 92.60 77.75 68.83 90.10 86.30 70.30 91.79
+RTL 65.44 74.61 92.13 67.50 69.81 89.50 88.29 68.33 91.21

KL 79.32 76.40 93.70 85.43 73.96 93.62 80.11 75.80 93.59
+RTL++ 69.14 74.68 91.39 63.51 77.91 93.67 77.56 75.87 93.51
+RTL 70.08 73.51 91.29 64.85 78.73 94.23 80.46 73.55 92.84

GradNorm 87.48 60.41 87.46 97.30 55.00 86.83 96.95 53.65 85.83
GMM 92.18 63.26 89.34 99.09 62.07 91.35 86.33 73.32 92.46
IF 95.44 49.11 82.42 79.60 72.67 92.35 87.76 62.94 88.68
LOF 98.47 42.35 80.32 98.08 44.98 83.38 99.26 38.93 80.28

Dataset LSUN-C LSUN-R iSUN
Method FPR AUROC AUPR FPR AUROC AUPR FPR AUROC AUPR

MSP 66.00 83.85 96.35 82.48 75.39 94.08 82.93 75.62 94.10
+RTL++ 20.12 96.09 99.14 33.99 92.43 98.21 30.10 92.88 98.22
+RTL 19.68 96.18 99.15 48.24 88.13 97.11 45.66 88.94 97.28

Energy 35.78 93.46 98.60 79.14 79.42 95.04 81.00 78.99 94.92
+RTL++ 25.53 94.94 98.86 56.23 85.66 96.46 56.42 85.53 96.40
+RTL 27.81 93.83 98.51 59.68 83.83 95.98 60.90 83.43 95.85

Odin 57.38 87.05 97.07 69.27 82.48 95.81 66.22 83.01 95.85
+RTL++ 29.64 94.12 98.67 23.89 93.72 98.32 23.78 93.36 98.10
+RTL 34.32 92.95 98.37 28.50 91.66 97.67 27.18 91.79 97.57

KL 35.78 93.46 98.60 79.14 79.42 95.04 81.00 78.99 94.92
+RTL++ 25.53 94.94 98.86 56.23 85.66 96.46 56.42 85.53 96.40
+RTL 27.80 93.83 98.51 59.68 83.83 95.98 60.90 83.43 95.85

GradNorm 39.47 92.12 98.22 99.06 40.06 80.11 99.06 44.09 82.10
GMM 92.69 68.75 91.34 96.17 78.01 95.34 97.93 74.34 94.19
IF 40.69 90.68 97.72 90.66 60.69 88.15 91.32 60.79 88.44
LOF 97.37 36.64 77.84 98.02 49.36 85.27 98.16 47.67 84.65

Table 9. Details of Experiments On CIFAR-100
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