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Figure 1. The detailed workflow of 3D-CAB in OAVD. 3D-CAB is one layer of the 3D U-net � in Fig. 5 of the main paper body. To
be clear, we denote the input representation of 3D-CAB as zvin , and the output representation as zvout . Within 3D-CAB, the feature
representation of bounding boxes zb and text descriptions zt are fused successively to the Gated Self-Attention (GA) and Cross-Attention
(CA) modules, where zb is obtained by MLP(Fourier(Bbox)) in Eq.(4) and zt is generated by our Abductive CLIP. In Fourier(Bbox), there
is a Token Selection (TS) module [34] to find the important tokens for object representation learning. Notably, different from [61], the
query (q), key (k), and value (v) are all updated in the OAVD training phase.

1. The Architecture of 3D-CAB

To be clear for re-reproduction, we detail the workflow
of 3D-CAB in OAVD, as shown in Fig. 1. B denotes the
batch size, and the maximum text prompt length L is set
to 77. In each layer of 3D-CAB, c, h, and w represent the
channels, height, and width of the input video feature zvin ,
and C, H , and W represent the channels, height, and width
of the video clip representation after ResNet Block encod-
ing. Notably, the channels, height, and width in each step
of 3D-CAB change for a dimension adaptation. Further-
more, we inject different attention modules, i.e., SA, CA,
and TA, into Low-rank Adaptation (LoRA) trainer 6 for fast
fine-tuning on LDM [46].

2. OD Analysis for Different Kinds of Objects

For an adequate benchmark, we offer a more detailed
Object Detection (OD) analysis for distinct object types.
Likewise, our evaluation utilizes the Average Precision
(AP) metrics. In this context, we consider the original AP
(average precision with IoU thresholds ranging from 0.5
to 0.95), AP50 (with an IoU threshold of 0.5), and AP75
(with an IoU threshold of 0.75) for our assessment. Addi-

6https://github.com/cloneofsimo/lora

tionally, due to the varying scales of the objects involved
in collisions during accident scenarios, we have evaluated
the proficiency of the model in detecting objects of small
(< 32 ⇤ 32), medium (> 32 ⇤ 32 & < 96 ⇤ 96), and large
(> 96⇤96) scales, as measured by AP S, AP M, and AP L.

We present the fine-grained quantitative object analysis
for 11 state-of-the-art detectors in Tab. 1 and Tab. 2. Ac-
cording to the results, we can see that the accuracy of both
detectors, YOLOv5s and DiffusionDet are the best in al-
most all object categories. YOLOv5s is better than Diffu-
sionDet with V1-Train [ , , ] for testing [ , , ],
while DiffusionDet benefits from excellent generalization
(V2-Train [ , ], test.[ ]), which allows DiffusionDet to
detect important objects in accident scenarios even if these
objects are not present in the training data.

Sensitivity to Different Kinds of Objects: According to
the results of Tab. 1 and Tab. 2, all object detectors perform
best when detecting cars as they are the most commonly
occurring object in MM-AU. YOLOv5s obtains 0.936 of
AP50 in the V1-Train mode, and DiffusionDet generates
0.908 of AP50 under the V2-Train mode. For cars, pedes-
trians, trucks, buses, and traffic lights, the AP values of the
best detector are larger than 0.5. Yet, motorcycles and cy-
clists are hard to be detected especially under the V2-Train

https://github.com/cloneofsimo/lora


Table 1. The object detection results of V1-Train [ , , ]) and V2-Train [ , ]) for 11 state-of-the-art detectors on the MM-AU, w.r.t.,
pedestrians, cars, motorcycles, and trucks.

pedestrian

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
method AP AP50 mAP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.454 0.715 0.522 0.491 0.473 0.376 0.294 0.535 0.302 0.33 0.340 0.149
CornerNet [30] 0.378 0.549 0.439 0.317 0.436 0.252 0.335 0.511 0.384 0.203 0.406 0.217

CascadeRPN [58] 0.448 0.699 0.513 0.443 0.46 0.424 0.365 0.593 0.407 0.331 0.405 0.266
CenterNet [10] 0.011 0.040 0.002 0.037 0.014 0.011 0.047 0.135 0.019 0.034 0.062 0.021

DETR [4] 0.099 0.294 0.038 0.096 0.088 0.15 0.058 0.175 0.022 0.029 0.064 0.067
EfficientNet [53] 0.114 0.299 0.055 0.096 0.127 0.106 0.000 0.002 0.000 0.004 0.000 0.001

Deformable-DeTR [74] 0.404 0.686 0.441 0.396 0.421 0.361 0.369 0.64 0.404 0.317 0.414 0.279
YOLOx [16] 0.424 0.695 0.471 0.387 0.440 0.406 0.293 0.531 0.297 0.206 0.344 0.213

YOLOv5s [23] 0.529 0.784 0.632 0.459 0.544 0.521 0.370 0.632 0.412 0.295 0.419 0.265
DiffusionDet [7] 0.527 0.767 0.607 0.463 0.544 0.516 0.480 0.699 0.557 0.423 0.531 0.376

YOLOv8 [54] 0.506 0.748 0.590 0.455 0.516 0.512 0.415 0.650 0.481 0.322 0.463 0.337

car

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.677 0.910 0.788 0.532 0.672 0.771 0.608 0.851 0.694 0.501 0.629 0.639
CornerNet [30] 0.493 0.628 0.537 0.259 0.561 0.532 0.481 0.639 0.522 0.259 0.563 0.479

CascadeRPN [58] 0.714 0.908 0.805 0.567 0.701 0.819 0.644 0.866 0.733 0.531 0.646 0.706
CenterNet [10] 0.073 0.135 0.071 0.100 0.094 0.062 0.264 0.515 0.242 0.194 0.328 0.256

DETR [4] 0.402 0.746 0.381 0.133 0.349 0.638 0.346 0.676 0.312 0.135 0.308 0.524
EfficientNet [53] 0.409 0.745 0.426 0.140 0.423 0.547 0.146 0.359 0.086 0.050 0.151 0.191

Deformable-DeTR [74] 0.657 0.906 0.763 0.466 0.636 0.801 0.607 0.882 0.684 0.393 0.599 0.736
YOLOx [16] 0.713 0.913 0.799 0.529 0.706 0.840 0.619 0.844 0.692 0.431 0.622 0.720

YOLOv5s [23] 0.769 0.936 0.862 0.585 0.762 0.882 0.682 0.902 0.787 0.495 0.684 0.773
DiffusionDet [7] 0.754 0.932 0.836 0.586 0.747 0.867 0.720 0.908 0.801 0.575 0.721 0.808

YOLOv8 [54] 0.755 0.926 0.836 0.576 0.748 0.867 0.707 0.896 0.791 0.532 0.706 0.801

motorcycle

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.316 0.554 0.330 0.268 0.341 0.291 0.165 0.342 0.139 0.208 0.200 0.081
CornerNet [30] 0.232 0.393 0.250 0.200 0.284 0.147 0.176 0.334 0.175 0.160 0.222 0.108

CascadeRPN [58] 0.320 0.511 0.340 0.272 0.336 0.313 0.175 0.357 0.150 0.186 0.200 0.0153
CenterNet [10] 0.002 0.008 0.001 0.021 0.003 0.001 0.016 0.052 0.005 0.053 0.019 0.005

DETR [4] 0.115 0.306 0.059 0.057 0.123 0.128 0.038 0.121 0.010 0.029 0.044 0.035
EfficientNet [53] 0.133 0.312 0.085 0.074 0.151 0.127 0.002 0.006 0.000 0.014 0.002 0.001

Deformable-DeTR [74] 0.276 0.506 0.276 0.231 0.305 0.266 0.201 0.417 0.173 0.115 0.223 0.176
YOLOx [16] 0.332 0.560 0.356 0.253 0.365 0.312 0.148 0.318 0.120 0.183 0.189 0.125

YOLOv5s [23] 0.388 0.615 0.429 0.301 0.406 0.391 0.061 0.146 0.040 0.017 0.044 0.105
DiffusionDet [7] 0.375 0.599 0.403 0.300 0.398 0.365 0.286 0.493 0.297 0.256 0.325 0.219

YOLOv8 [54] 0.370 0.578 0.412 0.296 0.390 0.368 0.241 0.440 0.237 0.241 0.271 0.215

truck

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.505 0.715 0.594 0.389 0.467 0.539 0.338 0.516 0.390 0.286 0.384 0.314
CornerNet [30] 0.410 0.521 0.439 0.203 0.473 0.390 0.398 0.517 0.422 0.181 0.419 0.404

CascadeRPN [58] 0.545 0.715 0.620 0.385 0.493 0.591 0.412 0.574 0.471 0.316 0.379 0.441
CenterNet [10] 0.021 0.040 0.021 0.017 0.018 0.036 0.076 0.161 0.060 0.048 0.102 0.076

DETR [4] 0.287 0.506 0.292 0.098 0.201 0.373 0.18 0.341 0.173 0.053 0.129 0.220
EfficientNet [53] 0.201 0.345 0.225 0.119 0.193 0.218 0.015 0.045 0.004 0.005 0.016 0.014

Deformable-DeTR [74] 0.550 0.741 0.645 0.362 0.476 0.612 0.463 0.649 0.538 0.266 0.42 0.509
YOLOx [16] 0.332 0.560 0.356 0.253 0.365 0.312 0.410 0.595 0.462 0.253 0.371 0.449

YOLOv5s [23] 0.388 0.615 0.429 0.301 0.406 0.391 0.510 0.686 0.600 0.285 0.418 0.575
DiffusionDet [7] 0.652 0.792 0.708 0.488 0.580 0.714 0.549 0.681 0.599 0.405 0.510 0.582

YOLOv8 [54] 0.370 0.578 0.412 0.296 0.390 0.368 0.556 0.692 0.615 0.344 0.470 0.615



Table 2. The object detection results of V1-Train [ , , ]) and V2-Train [ , ]) for 11 state-of-the-art detectors on the MM-AU, w.r.t.,
buses, traffic lights, and cyclists.

bus

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.521 0.690 0.615 0.304 0.431 0.580 0.312 0.455 0.356 0.263 0.298 0.328
CornerNet [30] 0.380 0.465 0.408 0.174 0.404 0.376 0.412 0.507 0.443 0.154 0.359 0.461

CascadeRPN [58] 0.522 0.658 0.604 0.263 0.449 0.579 0.395 0.529 0.464 0.214 0.342 0.441
CenterNet [10] 0.003 0.005 0.003 0.001 0.002 0.003 0.027 0.052 0.025 0.028 0.036 0.026

DETR [4] 0.201 0.321 0.219 0.042 0.118 0.258 0.131 0.212 0.141 0.001 0.076 0.167
EfficientNet [53] 0.106 0.169 0.123 0.028 0.108 0.109 0.003 0.008 0.001 0.001 0.002 0.003

Deformable-DeTR [74] 0.511 0.670 0.603 0.266 0.401 0.591 0.484 0.625 0.575 0.282 0.396 0.541
YOLOx [16] 0.595 0.730 0.678 0.336 0.479 0.670 0.417 0.556 0.483 0.136 0.33 0.475

YOLOv5s [23] 0.685 0.794 0.757 0.400 0.541 0.767 0.418 0.553 0.503 0.006 0.238 0.541
DiffusionDet [7] 0.650 0.759 0.707 0.360 0.531 0.721 0.574 0.674 0.632 0.315 0.492 0.631

YOLOv8 [54] 0.668 0.779 0.734 0.371 0.526 0.753 0.533 0.637 0.592 0.123 0.409 0.616

traffic light

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.487 0.689 0.583 0.434 0.515 0.208 0.371 0.528 0.451 0.325 0.402 0.039
CornerNet [30] 0.412 0.543 0.482 0.306 0.506 0.024 0.248 0.317 0.280 0.275 0.286 0.018

CascadeRPN [58] 0.495 0.675 0.585 0.417 0.532 0.226 0.409 0.531 0.480 0.368 0.437 0.103
CenterNet [10] 0.061 0.127 0.048 0.040 0.085 0.000 0.076 0.167 0.057 0.070 0.094 0.000

DETR [4] 0.132 0.359 0.069 0.062 0.163 0.068 0.079 0.243 0.024 0.048 0.095 0.046
EfficientNet [53] 0.164 0.260 0.169 0.090 0.207 0.011 0.024 0.089 0.000 0.006 0.033 0.000

Deformable-DeTR [74] 0.394 0.669 0.450 0.345 0.420 0.304 0.320 0.585 0.323 0.264 0.35 0.155
YOLOx [16] 0.480 0.667 0.570 0.384 0.546 0.328 0.310 0.458 0.359 0.248 0.346 0.151

YOLOv5s [23] 0.542 0.743 0.653 0.428 0.590 0.423 0.356 0.548 0.420 0.297 0.391 0.207
DiffusionDet [7] 0.522 0.703 0.605 0.440 0.570 0.344 0.511 0.680 0.589 0.441 0.559 0.248

YOLOv8 [54] 0.526 0.703 0.622 0.413 0.575 0.429 0.417 0.570 0.492 0.317 0.465 0.247

cyclist

V1-Train [ , , ], test. [ , , ] V2-Train [ , ], test. [ ]
Detectors AP AP50 AP75 AP S AP M AP L AP AP50 AP75 AP S AP M AP L

FasterRCNN [45] 0.218 0.391 0.246 0.015 0.248 0.196 0.122 0.255 0.105 0.086 0.144 0.072
CornerNet [30] 0.179 0.297 0.184 0.020 0.196 0.191 0.227 0.370 0.242 0.034 0.257 0.194

CascadeRPN [58] 0.255 0.446 0.276 0.017 0.253 0.318 0.150 0.275 0.166 0.066 0.159 0.171
CenterNet [10] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

DETR [4] 0.035 0.106 0.011 0.012 0.033 0.051 0.003 0.012 0.002 0.000 0.003 0.007
EfficientNet [53] 0.016 0.039 0.010 0.002 0.018 0.019 0.000 0.000 0.000 0.000 0.000 0.000

Deformable-DeTR [74] 0.231 0.446 0.221 0.038 0.244 0.255 0.166 0.313 0.158 0.088 0.177 0.161
YOLOx [16] 0.235 0.439 0.223 0.048 0.228 0.309 0.137 0.271 0.121 0.081 0.174 0.108

YOLOv5s [23] 0.368 0.601 0.423 0.058 0.362 0.477 0.005 0.012 0.004 0.000 0.006 0.004
DiffusionDet [7] 0.360 0.577 0.391 0.036 0.373 0.418 0.302 0.474 0.319 0.095 0.318 0.291

YOLOv8 [54] 0.314 0.508 0.351 0.057 0.302 0.416 0.198 0.332 0.211 0.070 0.236 0.221

mode, where all kinds of AP values are less than 0.5. Here,
compared with DiffusionDet, YOLOv5s is with failure on
motorcycles and cyclists in the V2-Train mode.

Adaptability to Small Objects: Small object detection is a
difficult problem because there are not enough details to ob-
tain a strong feature representation. As for accident scenar-
ios, this problem may be aggravated because of the unusual
property. Therefore, we can observe that most detectors
generate the lowest AP S values within their AP value set.
For motorcycles, traffic lights, and pedestrians, too large ob-
jects commonly are unusual and AP L values are the small-
est in V2-Train mode. Contrarily, for these kinds of objects,

AP L values in V1-Train mode are not the smallest, which
indicates that the large size of objects in the accident win-
dow frequently appears due to the severe scale change, e.g.,

the ego-car involved cases in Fig. 2 (1)-(2) and (5)-(6).

Scalability to Corner Objects: The objects in the road ac-
cident window are the typical corner cases in object detec-
tion. Fig. 2 demonstrates some examples of the detection
results of CenterNet, DETR, DiffusionDet, and YOLOv5s.
It is clear that these corner cases are hard to address because
of the dramatic scale change (Fig. 2(1)-(2) and (5)-(6)) and
severe pose distortion (Fig. 2(1) and (3)-(4)). Many ob-
jects are wrongly detected, such as the wrong detections of
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Figure 2. The object detection snapshots in accident frames by CenterNet [30], DETR [4], DiffusionDet [7], and YOLOv5s [23]. We can
see that all detectors fail to detect the cyclist (column (2)) and the pedestrian with distorted posture (column (1)). DETR is more active for
covering all possible objects while many false detections are generated.

car!truck, bus!truck. DETR is more active in covering
all possible objects while generates many false detections.

In summary, due to the corner cases, object detection in
ego-view accident videos still has many unresolved issues.

3. ArA Case Analysis, w.r.t., Different Objects

Continuing the aforementioned analysis of the ArA task
in the main body, we show some cases with respect to dif-
ferent objects in Fig. 3 from the results of the state-of-the-
art methods. We can see that because many pedestrian-
involved accidents may be caused by distracted walking
or aggressive movement, such as sudden crossing, besides
HCRN [31], all the methods can provide an accurate ac-
cident reason for the shown cases. For the surrounding
car-involved cases, the irregular behaviors of cars are the
common reason for the accidents, which implies a traffic
rule reasoning problem. Therefore, the methods with bet-
ter commonsense knowledge learning, such as SeViLA [70]
(the only method for the accurate ArA for the 4th case),
have advantages. As for the ego-car involved cases, the se-
vere scale change advocates the object-centric methods with
better region context learning.

4. More Evaluations of OAVD

More evaluations are provided here for a sufficient un-
derstanding of our Object-centric Accident Video Diffusion

(OAVD). We provide more example analysis to check the
abductive ability by our OAVD with a comparison to other
state-of-the-art video diffusion methods. Notably, we fur-
ther include ModelScope T2V (preprint)7 and Text2Video-
Zero (published in ICCV2023)8 in the evaluation. Mod-
elScope T2V is re-trained by a same number of samples
with our OAVD (i.e., 6000 Co-CPs), and Text2Video-Zero
is another training-free video diffusion method.
More Visualizations of OAVD Against SOTAs: Fig. 4
and Fig. 5 present the qualitative comparisons of dif-
ferent video diffusion models. The inference flow is
(Bboxes !Vr)+tr/tp!Vg , i.e., that we input the detected
bounding boxes Bboxes, the video clip in near-accident
window Vr , and the accident reason or prevention ad-
vice description tr/tp. From the demonstrated snapshots,
we can see that, our OAVD similarly shows an “in advance”
phenomenon for the accident reason prompt and eliminates
the crashing object when inputting the prevention advice de-
scription. ModelScope T2V also generates promising video
frames with clear details, even with the ability to eliminate
the objects to be involved in accidents after inputting the
prevention advice description, as shown by the second ex-
ample in Fig. 4 and the first case in Fig. 5. Yet, it is not

7https://modelscope.cn/models/damo/text- to-
video-synthesis/summary

8https : / / github . com / Picsart - AI - Research /
Text2Video-Zero

https://modelscope.cn/models/damo/text-to-video-synthesis/summary
https://modelscope.cn/models/damo/text-to-video-synthesis/summary
https://github.com/Picsart-AI-Research/Text2Video-Zero
https://github.com/Picsart-AI-Research/Text2Video-Zero


A: The pedestrian notices the coming vehicles when crossing the street
B: The pedestrian falls down in the avoidance of vehicles C:	The ego-car drives too fast in rainy and snowy day
D:	The	motorcycle	tire	is	locked	due	to	emergency	braking
E:	The	pedestrian	does	not	notice	the	coming	vehicles	when	crossing	the	street

HCRN:	C
ClipBERT:	E
VGT:	E
FrozenGQA:	E
CoVGT:	E
SeViLA:	E

A:	The pedestrian	notices	the	coming	vehicles	when	crossing	the	street B: The	cyclist	hits	the	road	curb
C:	The	car	does	not	notice	the	pedestrians	when	reversing
D:	The	pedestrian	does	not	notice	the	coming	vehicles	when	crossing	the	street
E:	The	pedestrian	moves	or	stays	on	the	motorway

HCRN:	C
ClipBERT:	D
VGT:	D
FrozenGQA:	D
CoVGT:	D
SeViLA:	D

A: The car driver is in distracted driving B: The car is hit by rear car C:	The car driver is not in distracted driving
D:	The	car	overtakes	without	giving	the	way	to	the	normal	running	vehicle E:	Motorcycle	runs	the	red	light

HCRN:	D
ClipBERT:	E
VGT:	D
FrozenGQA:	A
CoVGT:	A
SeViLA:	A

A:	The ego-car	turns	or	changes	lanes	giving	way	to	normal	vehicles	in	the	lane
B:	The	ego-car	turns	or	changes	lanes	without	giving	way	to	normal	vehicles	in	the	lane
C:	The	ego-car	runs	red	light D:	The	car	does	not	notice	the	coming	vehicles	when	crossing	the	road
E:	The	ego-car's	vision	is	blocked	or	blurred,	and	there	is	no	time	to	brake

HCRN:	D
ClipBERT:	E
VGT:	E
FrozenGQA:	E
CoVGT:	B
SeViLA:	B

A:	The	car	turns	too	fast B:	The	ego-car	is	out	of	control C:	The	pedestrian	falls	down	in	the	avoidance	of	vehicles
D:	The	ego-car	does	not	give	the	way	at	narrow	road E:	The	ego-car	gives	the	way	at	narrow	road

HCRN:	A
ClipBERT:	B
VGT:	B
FrozenGQA:	B
CoVGT:	B
SeViLA:	D

A:	The	ego-car	is	out	of	control B:	The	truck	is	out	of	control C:	The	tree	falls	suddenly
D:	The	truck	is	under	control E:	The	truck	does	not	notice	the	coming	vehicles	when	turning	or	changing	lanes

HCRN:	D
ClipBERT:	D
VGT:	D
FrozenGQA:	A
CoVGT:	B
SeViLA:	B
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Figure 3. The case visualization of Accident reason Answering (ArA) by 8 state-of-the-art Video Question Answering (VQA) methods.

stable verified by Fig. 4 (the 1st example) and Fig. 5 (the
2nd sample). As for other methods, including the training-
free ones, the style and the content of the generated video
frames are not relevant to the given text prompts.

More Analysis on the Impact of Bboxes: To be clear
about the impact of bounding boxes (Bboxes) for our
OAVD model, we re-train the OAVD without the input of
Bboxes driven by the Sequential CLIP (S-CLIP) and Ab-
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!":	The black vehicle drives too fast.
!#:	The black vehicle should comply with the traffic rules 
during driving, and should not exceed the speed limit.
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!#:	The ego-car should slow down or honk their horns 
when they stop at intersections or trunk roads where 
their vision is blocked to prevent other vehicles or 
pedestrians from rushing out suddenly.

!":	The ego-car's vision is blocked or blurred, and 
a cyclist and a car appear suddenly.
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Figure 4. The visualization of generated frames by our OAVD, ModelScope T2V, Tune-A-Video [61], ControlVideo [72], and Text2Video-
Zero.
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!":	The ego-car's vision is blocked or blurred, and 
a cyclist appears suddenly.
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!#: Vehicles should slow down when passing intersections 
or crosswalks, and observe the traffic carefully�

!":	The vehicles drive too fast 
with short braking distance.
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!#:	The ego-car should slow down or honk their horns when 
they stop at trunk roads where their vision is blocked to 
prevent other pedestrians from rushing out suddenly.
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Figure 5. The visualization of generated frames by our OAVD, ModelScope T2V, Tune-A-Video [61], ControlVideo [72], and Text2Video-
Zero.



!": The ego-car hits a motorbike

!":The ego-car hits a car

!": The ego-car hits a truck

!": A car is out of control !": A car hits a motorbike
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!": The ego-car hits a truck

Figure 6. The visualization of accident video generation of OAVD with the inference path of (Bboxes !Vo)+ta!Vg .

!": The ego-car hits a car !": The ego-car hits a crossing motorbike

!": A car hits another car!":The ego-car hits a cyclist
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Figure 7. The visualization of video-free accident video generation of OAVD with the inference path of Bboxes+ta!Vg .

ductive CLIP (A-CLIP) models. The video-level Fréchet
Video Distance (FVD) [55] is adopted here. The results in
Tab. 3 show that the bounding boxes are useful for enhanc-
ing the video quality, and lower FVD values are generated.
Based on the evaluation, object-centric video diffusion is
promising for generating detailed frame content.

Table 3. FVD value comparison of our OAVD with or without the
input of bounding boxes. *: with the input of bounding boxes.

Method OAVD (S-CLIP)⇤ OAVD (S-CLIP) OAVD (A-CLIP)⇤ OAVD (A-CLIP)
FVD # 5372.3 5384.6 5238.1 5358.8

Visualizations of Accident Video Generation: Besides
the abductive check for our video diffusion model OAVD,
we also show its ability for flexible accident video genera-
tion. To be clear, the inference stage here takes the video
clip in normal video segment Vo and the accident cate-

gory description ta. This configuration verifies the reality-
changing ability from normal situations to accidents. Fig.
6 shows some examples of accident video generation. We
can curiously find that our OAVD can create the object to be
involved in accidents with a clear pose or appearance. This
ability may address the few-shot sample issue of accident
videos for future task use.

In addition, we also check the video-free accident video
generation by only inputting the bounding boxes to our
OAVD. Here, the four 9 bounding boxes are randomly set
for each example. From the results in Fig. 7, the guidance
of the accident category description is clearly verified and
the generated accident videos are more realistic without the
restriction of original video frames. From these visualiza-
tions, OAVD can flexibly augment the video sample scale
of ego-view accidents for safe driving.

9Other values can also be set.
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