
Re-thinking Data Availability Attacks Against Deep Neural Networks

Supplementary Material

A. The Omitted Proofs
Lemma 1. Let fθ(xi)[k] indicates the k-th value of
the predicted vector. Let R = (1

K , . . . , 1
K) ∈

RK denotes the random guess probability and Θ =
(fθ(xi)[0], . . . , fθ(xi)[K]) ∈ RK denotes the predicted
probability. Then, we have

−R logΘ = KL(R|Θ) + logK. (9)

Proof.

KL(R|Θ) =

K∑
j=1

1

K
(log

1

K
− log(fθ(x)[j]))

=

K∑
j=1

1

K
log

1

K
−

K∑
j=1

1

K
log(fθ(x)[j])

= − logK +R logΘ

(10)

Theorem 2. Let fθ(xi)[k] indicates the k-th value of the
predicted vector. Let R = (1

K , . . . , 1
K) ∈ RK denotes the

random guess probability. Then, we have

0 ≤ 1

K

K∑
j=1

(fθ(x)[j]−
1

K
)2 <

4

K
(11)

Proof. Since, |fθ(x)[j]− 1
K | ≥ 0, we have:

1

K

K∑
j=1

(fθ(x)[j]−
1

K
)2

≤ 1

K

(K∑
j=1

(fθ(x)[j]−
1

K
)2

+

K∑
j=1

|fθ(x)[j]−
1

K
| ·

K∑
k=1,k ̸=j

|fθ(x)[k]−
1

K
|
)

=
1

K
(

K∑
j=1

|fθ(x)[j]−
1

K
|)2

(12)

Since, fθ(x)[j] ≥ 0, then |fθ(x)[k]− 1
K | < |fθ(x)[k] +

1
K |. We have:

1

K
(

K∑
j=1

|fθ(x)[j]−
1

K
|)2 <

1

K
(

K∑
j=1

|fθ(x)[j] +
1

K
|)2

=
1

K

(K∑
j=1

(fθ(x)[j] +
1

K
)

)2

(13)

Since,
∑K

j=1 fθ(x)[j] = 1, we have:

1

K

(K∑
j=1

(fθ(x)[j] +
1

K
)

)2

=
4

K
(14)

In summary, we have:

0 ≤ 1

K

K∑
j=1

(fθ(x)[j]−
1

K
)2 <

4

K
(15)

B. An Analysis of REM

B.1. The optimization object of REM’s paper and
code implementation are inconsistent.

The reason REM [8] believes that adversarial training can
disrupt non-robust attacks is that the model can learn from
the adversarial examples. These adversarial examples con-
tribute to an increase in the model’s classification loss, which
may encode valuable knowledge that can be harnessed to
update the model’s parameters and improve the model’s per-
formance. As a result, REM [8] generates unlearnable noise
exclusively for adversarial examples, rather than clean data,
ensuring that unlearnable noise remains effective against
adversarial training. Eq (16) represents the proposed opti-
mization objective.

Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} represent a
dataset consisting of n samples, where xi ∈ X is the i-th
sample and yi ∈ Y = {1, . . . ,K} is the corresponding label.
Let a parameterized machine learning model be denoted by
fθ : X → Y , where θ ∈ Ω is the model parameter. Let ℓ
denote a loss function. Then, the training objective for the
robust noise generator is as follows:

min
θ

1

n

n∑
i=1

min
∥δui ∥≤ρu

max
∥δai ∥≤ρa

ℓ(f ′
θ(xi + δui + δai), yi)

standard unlearnable noise for
training adversarial examples

(16)
where ρu is the defensive perturbation radius that compels
the generated robust unlearnable noise to be imperceptible.

However, the code implementation of REM [8]2 does not
exactly follow the optimization goals in the paper, which are

2https://github.com/fshp971/robust-unlearnable-
examples/blob/main/generate robust em.py

presented below:

min
θ

1

n

n∑
i=1

max
δai

′
min
δui

max
δai

ℓ(f ′
θ(xi + δui + δai + δai

′), yi)

adversarial unlearnable noise for
training adversarial examples

(17)
We have intercepted some fragments of the code. In the

code pie segment below, line 8 is the extra optimization
process that REM’s authors added to the code. Obviously,
REM’s authors performed an additional process of maximiz-
ing before training the surrogate model.

1 if args.cpu:
2 def_x = train_trans(x + torch.

tensor(def_noise[ii]))
3 else:
4 def_x = train_trans(x + torch.

tensor(def_noise[ii]).cuda
())

5 def_x.clamp_(-0.5, 0.5)
6
7 # the additional max step
8 adv_x = attacker.perturb(model,

criterion, def_x, y)
9

10 model.train()
11 _y = model(adv_x)
12 def_acc = (_y.argmax(dim=1) == y).

sum().item() / len(x)
13 def_loss = criterion(_y, y)
14 optim.zero_grad()
15 def_loss.backward()
16 optim.step()

B.2. Both Paper and Code Are not The Proper Op-
timization Object

The optimization object in REM’s paper is equal to EM.
As displayed in Eq (16), we divided the optimization ob-

jective of REM in the paper into two parts: the inner part,
which generates unlearnable noise, and the outer part, which
trains the model normally. The training process of this sur-
rogate model is essentially the same as EM [13], with the
only difference being the target of the generated unlearnable
noise. REM’s unlearnable noise targets adversarial exam-
ples, while EM’s unlearnable noise targets clean examples.
As shown in Table 7, the unlearnable noise generated for
either example is not resistant to adversarial training. This
observation aligns with our theoretical perspective, leading
us to posit that the emergence of robust unlearnable noise
is attributable to the inherent robustness of the surrogate
model. The consistency between our findings and this hy-

pothesis further substantiates the connection between model
robustness and unlearnable noise generation.

The optimization object in REM’s code is complex and
incorrect. As illustrated in Eq. (17), we similarly divide
the optimization objective employed by the REM-code into
two distinct components: an internal component responsible
for generating unlearnable noise against the samples, and
an external component dedicated to training robust alterna-
tive models. By comparing the REM-paper and REM-code
as presented in Table 7, it becomes evident that the addi-
tional optimization process of maximization, introduced in
the REM code, is a critical factor in enabling unlearnable
noise to withstand adversarial training. This observation
underscores our conviction that the generation of robust
unlearnable noise hinges upon the presence of a robust al-
ternative model. However, two issues arise with the current
optimization process:

1. The unlearnable noise generated by REM is specific to
the adversarial example, which is not a valid assumption.
Consequently, we propose optimizing the internal compo-
nent of the REM code by retaining only the minimization
optimization process.

2. Although the REM-code employs adversarial training to
enhance model robustness, it fails to consider the defini-
tion of unlearnable examples. As a solution, we refine the
training process of the alternative model by introducing
ASR while accounting for the model’s randomness in
predicting probabilities for clean samples.

Taking these factors into account, we put forth our refined
optimization objective, which aims to address the aforemen-
tioned concerns and foster a more accurate and comprehen-
sive understanding of robust unlearnable noise generation.

Table 7 clearly demonstrates that generating unlearnable
noise for adversarial examples remains susceptible to corrup-
tion by adversarial training. Comparing the REM-paper [8]
and EM [13] approaches under different adversarial training
perturbation radii, we observe that both techniques yield
similar protection effects. This result supports our hypoth-
esis that REM-paper [8] is fundamentally equivalent to
EM [13]. Additionally, the evidence presented confirms
that non-robust surrogate models are incapable of generating
unlearnable examples that can withstand adversarial training.

Therefore, we believe that a robust surrogate model is key
to generating unlearnable examples that can resist adversar-
ial training. Furthermore, the supplementary ASR correction
term introduced in our methodology places particular em-
phasis on the performance of the alternative model when
dealing with clean samples. To summarize, our proposed
approach eliminates unnecessary optimization steps while
providing a more comprehensive evaluation of relevant fac-
tors. Consequently, it demonstrates superior performance in
comparison to other methodologies under investigation.

Dataset Adv.
Train.
ρa

Clean EM TAP NTGA REM-paper REM-code EntF Ours

ρa = 4/255 ρa = 4/255 ρa = 4/255 ρa = 4/255

CIFAR-10

0 94.66 13.20 22.51 16.27 12.81 22.93 94.65 12.71
1/255 93.74 22.08 92.16 41.53 37.42 30.00 93.56 14.71
2/255 92.37 71.43 90.53 85.13 80.46 30.04 92.00 15.38
3/255 90.90 87.71 89.55 89.41 88.92 31.75 91.04 15.51
4/255 89.51 88.62 88.02 88.96 88.70 48.16 89.52 23.12

Table 7. Test accuracy (%) of models trained on data protected by different availability attacks via standard training and adversarial training.

C. Detailed Experimental Settings
C.1. Data Augmentation

In our experiments, we employ distinct data augmentation
techniques tailored to different datasets. For CIFAR-10 and
CIFAR-100 [15], we apply data augmentation comprising
random flipping, padding of 4 pixels on each side, random
cropping to a size of 32× 32, and rescaling per pixel in the
range [−0.5, 0.5] for individual images. In the case of the
ImageNet subset, we implement data augmentation through
random cropping, resizing to dimensions of 224× 224, ran-
dom flipping, and rescaling per pixel in the range [−0.5, 0.5]
for each image.

C.2. Adversarial Training

Adversarial training [19] is a commonly used method to
improve model robustness. Standard adversarial training
aims to solve the following min-max optimization problem:

min
θ

1

n

n∑
i=1

max
||δi||≤ρa

ℓ(fθ(xi + δi), yi) (18)

C.3. Projected Gradient Descent

PGD [19] is a standard approach for solving inner maxi-
mization and minimization problems. It performs iterative
projection updates to search for the optimal perturbation as
follows:

δ(k) =
∏

∥δ∥≤ρ

[
δ(k−1) + c · α · sign

(
∂

∂δ
ℓ(fθ(x+ δ(k−1)), y)

)]
(19)

where k is the current iteration step (K steps at all), δ(k)

is the perturbation found in the k-th iteration, c ∈ {−1, 1}
is a factor for controlling the gradient direction, α is the step
size, and

∏
∥δ∥≤ρ means the projection is calculated in the

ball sphere {δ : ∥δ∥ ≤ ρ}. The final output perturbation
is δ(K). Throughout this paper, the coefficient c is set as 1
when solving maximization problems and −1 when solving
minimization problems.

C.4. Detailed Settings for Our Method

In our approach, we build upon REM [8] and utilize ResNet-
18 [11] as the surrogate model f ′

θ. In our experiments, we

employ L∞-bounded noise constraints, denoted as ∥δu∥∞ ≤
ρu and ∥δa∥∞ ≤ ρa, where ρu represents the unlearnable
noise perturbation radius and ρa denotes the adversarial
perturbation radius. Both quantities assume various values.
The PGD settings are detailed in Table 8.

Regarding the CIFAR-10 and CIFAR-100 datasets, each
surrogate model undergoes training via SGD over 5, 000
iterations, utilizing a batch size of 128, a momentum factor
of 0.9, a weight decay factor of 0.0005, an initial learning
rate of 0.1, and a learning rate scheduler that reduces the
learning rate by a factor of 0.1 every 2, 000 iteration.

Similarly, for the ImageNet subset, we train each surro-
gate model using SGD for 3, 000 iterations with a batch size
of 128, a momentum factor of 0.9, a weight decay factor of
0.0005, an initial learning rate of 0.1, and a learning rate
scheduler that decays the learning rate by a factor of 0.1
every 1, 200 iteration.

Datasets Noise Type αu Ku αa Ka

CIFAR-10
CIFAR-100

EM ρu/5 10 - -
TAP ρu/125 250 - -

NTGA ρu/10 × 1.1 10 - -
REM ρu/5 10 ρa/5 10
EntF ρu/5 10 ρa/5 10
Ours ρu/5 10 ρa/5 10

ImageNet
Subset

EM ρu/5 7 - -
TAP ρu/50 100 - -

NTGA ρu/8 × 1.1 8 - -
REM ρu/4 7 ρa/5 10
EntF ρu/4 7 ρa/5 10
Ours ρu/4 7 ρa/5 10

Table 8. The settings of PGD [19] for the noise generations of error-
minimizing noise (EM) [13], targeted adversarial poisoning noise
(TAP) [7], neural tangent generalization attack noise (NTGA) [37],
robust error-minimizing noise (REM) [8], and our method in differ-
ent experiments. ρu denotes the defensive perturbation radius of
different types of noise, while ρa denotes the adversarial perturba-
tion radius of the robust error-minimizing noise.

C.5. Model Training Details

In accordance with Eq. (18), we carry out adversarial train-
ing [19] as described in appendix C.2. Analogous to the
training of the noise generator, we focus on the L∞-bounded
noise, denoted as ∥ρa∥∞ ≤ ρa, during the adversarial train-

Dataset Random Seed Method VGG16 ResNet18 ResNet50 DenseNet121 WRN-34-10 Average

CIFAR-10

Random-1
EM 86.17 86.25 85.18 82.65 72.43 82.54

REM 49.45 42.31 39.12 64.65 42.27 47.56
Ours 35.94 27.71 22.26 60.82 29.86 35.32

Random-20
EM 87.70 89.21 90.18 82.36 87.72 87.43

REM 53.60 47.42 43.37 68.01 48.71 52.22
Ours 34.35 22.15 18.61 57.21 22.05 30.87

Random-42
EM 87.24 88.62 89.66 81.77 79.87 85.43

REM 65.23 48.16 40.65 82.38 48.39 56.96
Ours 37.78 23.12 19.30 72.42 18.67 34.26

CIFAR-100

Random-1
EM 56.35 63.77 66.44 53.56 68.13 61.65

REM 50.51 27.54 26.85 54.62 26.43 37.19
Ours 40.64 12.29 16.42 44.12 16.00 25.89

Random-20
EM 56.37 63.32 66.43 53.74 68.35 61.64

REM 39.03 27.80 27.81 54.84 27.27 35.35
Ours 31.41 11.35 12.55 46.05 15.33 23.34

Random-42
EM 56.94 63.43 66.43 53.52 68.27 61.72

REM 58.07 27.35 26.03 56.63 27.71 39.16
Ours 55.05 23.00 21.47 52.25 20.14 34.38

Table 9. Test accuracy (%) of different models adversarially trained on CIFAR-10 and CIFAR-100 with different random seeds.

ing process.
Throughout our experiment, the model undergoes training

using SGD for 40, 000 iterations with a batch size of 128, a
momentum factor of 0.9, a weight decay factor of 0.0005,
an initial learning rate of 0.1, and a learning rate scheduler
that reduces the learning rate by a factor of 0.1 every 16, 000
iteration. For the CIFAR-10 and CIFAR-100 datasets, the
step number Ka and the step size αa in PGD are set to 10
and ρa/5, respectively. For the ImageNet subset, we set the
step number Ka and step size αa to 8 and ρa/4, respectively.
This ensures a consistent and well-structured experimental
setup across various datasets.

D. Time Consumption

Our method requires less time to train the robust noise gen-
erator than REM. Table 10 shows the time cost of three
different methods. It should be noted that the time cost for
CIFAR-10 and CIFAR-100 was tested using a V100, while
the time cost for ImageNet-Subset was tested using 4 V100s.

EM TAP NTGA REM Ours

CIFAR-10 0.4 0.5 5.2 22.6 5.6
CIFAR-100 0.4 0.5 5.2 22.6 5.6

ImageNet-Subset 3.9 5.2 14.6 51.2 11.3

Table 10. Time consumption (h) of different methods on different
datasets.

E. Random Seeds
The random seed for all the experiments in the paper is set
to 42. We also test different random seeds and the results
of the experiments are shown in the the following table 9.
ResNet-18 is used as the noise generator.

