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A. Implementation Details
A.1. Algorithm for Multiple Asymptotically Normal

Distribution Attack

In Section 3, we propose the Multiple Asymptotically Nor-
mal Distribution Attacks (MultiANDA), a novel method
that explicitly characterizes perturbations inferred from a
learned distribution. Specifically, in Section 3.2, we first
elaborate on the procedure of single ANDA, which approx-
imates the posterior distribution over the adversarial per-
turbations by leveraging the asymptotic normality property
of stochastic gradient ascent (SGA). Subsequently, in Sec-
tion 3.3, we apply an ensemble strategy on ANDA to es-
timate a mixture of Gaussian distributions, enhancing ex-
ploration of the potential optimization space. This leads to
further improved generalization performance of the attacks,
facilitating the generation of more diverse and transferable
adversarial examples. The detailed implementation of Mul-
tiANDA is shown in Algorithm A.1.

A.2. Datasets and Models

In this subsection, the datasets and models employed in
our experiments are detailed. In addition to the evaluation
experiments introduced in Section 4, we provide more re-
sults on the ViT-based [4, 6, 18] and CLIP [14] models in
this supplementary material, which are used to illustrate the
generalizability of our proposed methods to various model
architectures and the performance on the cross-domain task.

Datasets: The dataset is ImageNet-1k, which is identical
to the one described in Section 4.1.

Models: We considered two categories of target
models for evaluation: seven normally trained models
and seven advanced defense models. The first cate-
gory includes Inception-v3 (Inc-v3) [16], Resnet-v2-50
(ResNet-50), Resnet-v2-101 (ResNet-101), Resnet-v2-152
(ResNet-152) [5], Inception-v4 (Inc-v4), Inception-ResNet-
v2 (IncRes-v2) [17] and VGG-19 [15], where Inc-v3,
ResNet-50, IncRes-v2 and VGG-19 are also used as the
white-box source models to generate adversarial exam-
ples. The defense models contain three adversarially trained
models: Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [19]; the

Algorithm A.1: Multiple Asymptotically Normal
Distribution Attacks

Input: x: clean image x ∈ Rd; y: ground-truth label; f :
pre-trained source model;

Parameters: T : # iterations; ϵ: perturbation magnitude;
n: # batch samples for augmentation; M : # sampling
examples; K: # ensemble ANDAs; γ: the radius of
uniform noise;

Output: xadv: Adversarial examples;
Initialize α← ϵ/T , x0 ← x
for k = 0 to K − 1 do

Initialize the uniform noise in parallel
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xadv = Clipx,ϵ{x(T−1) + α · Sign(δ̄mean)}
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(k = 0, . . . ,K − 1)
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High-level representation Guided Denoiser (HGD) [9]; the
Neural Representation Purifier (NRP) [13]; the Random-



ized Smoothing (RS) [1]; and the ‘Rand-3’ submission in
the NIPS 2017 defense competition (NIPS-r3).

We aim to utilize ANDA/MultiAND to thoroughly test
the defense effectiveness of various strategies in recently
proposed defense approaches. The defense strategies and
the implementation details of these selected advanced de-
fense models are presented as follows:

• Three adversarially trained models, namely Inc-v3ens3 ,
Inc-v3ens4 and IncRes-v2ens [19];

• High-level representation guided denoiser (HGD, rank-1
submission in the NIPS 2017 defense competition) [9];

• Rand-3 submission in the NIPS 2017 defense competition
(NIPS-r3) 1;

• Randomized Smoothing (RS) [1]
• Neural Representation Purifier (NRP) [13]

We adopted the implementation of NRP as described in
[20], and sourced the remaining defense methods from their
official implementations. For all defense methods, we uti-
lized Inc-v3ens3 as the backbone architecture.

For the ViT series of models, four mainstream models:
ViT-L/16 [4], DeiT3-B/16 [18], Swin-B/4 [11] and PiT-B
[6] are selected. For the evaluation against the cross-domain
task, we choose the renowned multimodal model CLIP [14].

A.3. Hyper-Parameters

The basic attack settings were consistent with the work
[2, 20]: the maximum perturbation of ϵ = 16, and the num-
ber of iterations T = 10 and step size α = ϵ/T = 1.6.
We carefully tuned the specific hyper-parameters for each
baseline (e.g., the sampling number in VMI-FGSM, the en-
semble number in FIA, etc.), and the best results were
recorded.

For ANDA, we set the number of augmented samples
as 25 (i.e., n = 25), and the image augmenting parame-
ter Augmax (refer detailed explanation in Section C.3) as
0.3 if not specified. For MultiANDA, the default number
of ANDA components is 5 (i.e., K = 5). To ensure the
random starts of each MultiANDA component, we added
small uniform noises u to the original sample x, where
u ∼ U(−γ, γ), as shown in Algorithm A.1. To balance the
diversity among the ensemble components and the original
semantic information of inputs, we set the radius of uni-
form noise γ = 0.5

255 . Regarding the adopted baselines, we
employed the following corresponding hyper-parameters:
• For MI-FGSM, NI-FGSM and their variants, we set the

decay factor µ = 1.0. For VMI-FGSM [20], n = 20 and
β = 1.5.

• For DIM [24], the transformation probability was set to
0.5. For SIM [20], the number of scale copies is 5. For
TIM [3], we tuned the Gaussian kernel size in {15 × 15,

1https://github.com/anlthms/nips- 2017/tree/
master/mmd

7 × 7} with the same standard deviation σ = 3 by refer-
ring their official code2.

• For FIA [21], we followed the official settings in the cor-
responding paper.

• For TAIG [7], we chose TAIG-S as the baseline. To en-
sure a fair comparison in the single form, we adhered to
our basic settings (ϵ = 16, T = 10, and the number of
turning points E = 20). For a detailed comparison show-
casing the best performance of TAIG, refer to Section B.5.

B. Additional Experimental Results
B.1. Full evaluation results

Taking advantage of the extensive space in this appendix,
we present the complete experimental results for the base-
line methods and the proposed ANDA/MultiAND. These
encompass all seven normally trained models and seven
advanced defense models, as detailed in Table B.1 and
Table B.2, respectively. Notably, additional experiments
involving Inc-v4, ResNet-101, and Inc-v3ens4—models
with structures similar to Inc-v3, ResNet-50 and Inc-
v3ens3—further validate the effectiveness of our methods.
An intriguing finding is that using ResNet-50 as the source
model yields the best attacking performance. This aligns
with the conclusion drawn by Wu et al. [22]. They empiri-
cally studied this observation and disclosed the skip connec-
tion provided the actual contribution to this enhancement.
Wu et al. [22] and Zhu et al. [25] further boost the trans-
ferability by exploiting this finding. Moreover, the com-
paratively modest results on RS models have sparked our
interest for future research.

We conducted a similar statistical analysis, as shown in
Figure 3 in the main body, on defense models to determine
the numbers of black-box target models that each generated
example can deceive. The source model remains ResNet-
50. Figure B.1 shows 15% and 25% of the examples gener-
ated by ANDA and MultiANDA managed to fool all seven
models (as seen in the rightmost bars), respectively. In con-
trast, only 5% examples crafted by VMI-FGSM achieved
this. In addition, the failure rate of VMI-FGSM across
all seven models stands at 20%, compared to only 5% for
ANDA. These results indicate that the generated adversaries
by ANDA and MultiANDA are more diverse and have bet-
ter transferability than those by VMI-FGSM.

B.2. Cross-domain attack on CLIP

Admittedly, using a surrogate with the identical dataset as
target models for conducting black-box attacks is an ideal
setting, typically only feasible in lab experiments or when
targeting ‘general-purpose classification models’ trained on
ImageNet-based datasets, as in our case. We conducted

2https : / / github . com / dongyp13 / Translation -
Invariant-Attacks



Attack Target model
Inc-v3 Inc-v4 ResNet-50 ResNet-101 ResNet-152 IncRes-v2 VGG-19

In
cR

es
-v

2

BIM 36.3 28.7 25.6 22.1 20.6 99.3* 37.8
TIM 43.4 35.3 36.5 33.2 32.0 36.0* 66.2
SIM 58.9 50.9 47.8 41.7 41.4 99.6* 49.8
DIM 54.6 51.1 41.4 37.2 36.6 98.2* 50.0
FIA 82.2 78.3 75.3 75.2 72.4 89.2* 80.7

TAIG 73.9 69.1 63.4 60.5 58.4 95.0* 57.4
NI-FGSM 61.9 52.5 49.5 47.5 44.7 99.2* 64.7
MI-FGSM 60.3 53.4 49.3 45.6 43.0 98.8* 64.6

VMI-FGSM 81.1 76.9 69.6 69.0 66.4 99.3* 73.5
VNI-FGSM 80.9 77.2 70.0 68.6 65.8 99.4* 73.8

ANDA 93.0 90.5 86.4 83.9 83.7 99.8* 82.8
MultiANDA 93.9 92.1 87.1 86.1 85.6 99.8* 84.3

R
es

N
et

-5
0

BIM 33.2 26.6 99.7* 70.5 63.9 20.9 43.4
TIM 47.3 41.3 77.0* 49.4 47.6 30.8 68.8
SIM 48.6 40.8 100.0* 87.5 83.7 35.3 50.9
DIM 61.9 55.4 99.9* 88.0 83.6 47.5 61.1
FIA 86.2 83.9 99.6* 95.3 94.5 80.4 88.3

TAIG 62.4 55.8 100.0* 89.9 86.1 51.9 58.7
NI-FGSM 59.6 52.7 99.7* 88.0 85.4 48.1 67.0
MI-FGSM 58.5 52.6 99.7* 88.2 85.9 48.6 67.4

VMI-FGSM 75.3 69.9 99.9* 95.5 93.4 68.3 76.4
VNI-FGSM 75.4 69.1 99.8* 95.0 92.9 67.9 75.6

ANDA 95.6 94.3 100.0* 99.0 98.9 94.0 89.5
MultiANDA 96.5 94.9 100.0* 99.2 99.2 95.0 90.1

V
G

G
-1

9

BIM 23.5 23.9 18.7 17.4 13.7 9.9 99.9*
TIM 41.5 35.3 34.8 31.5 30.2 23.6 100.0*
SIM 37.7 43.3 34.4 29.2 25.2 23.6 100.0*
DIM 31.7 35.8 26.4 21.9 19.2 16.4 99.9*
FIA 57.4 61.3 50.7 44.9 40.9 42.7 100.0*

TAIG 48.8 52.6 43.6 35.8 34.7 33.9 100.0*
NI-FGSM 43.6 48.7 39.5 34.8 29.2 30.4 99.9*
MI-FGSM 44.7 48.1 39.4 34.7 28.9 30.8 99.9*

VMI-FGSM 62.7 65.3 56.7 49.3 46.5 48.6 100.0*
VNI-FGSM 63.2 65.6 56.7 50.4 46.6 48.8 100.0*

ANDA 74.4 80.6 64.1 59.8 56.4 61.5 100.0*
MultiANDA 75.4 82.1 66.1 61.5 58.6 63.5 100.0*

In
c-

v3

BIM 100.0* 24.1 20.3 16.4 15.7 15.6 34.3
TIM 64.3* 35.9 35.9 31.6 30.6 25.4 70.4
SIM 100.0* 43.3 38.2 32.9 31.1 35.9 42.2
DIM 100.0* 42.5 31.7 26.9 25.5 31.4 45.5
FIA 98.3* 85.4 78.4 76.1 75.3 81.2 84.5

TAIG 99.7* 59.6 53.3 47.8 45.9 56.7 54.2
NI-FGSM 100.0* 44.9 40.0 37.3 35.2 39.9 56.9
MI-FGSM 100.0* 45.1 40.2 36.2 35.1 40.3 57.1

VMI-FGSM 100.0* 71.7 63.0 58.9 59.3 68.6 70.3
VNI-FGSM 100.0* 72.6 62.4 58.3 58.7 67.7 69.7

ANDA 100.0* 85.7 76.1 74.1 72.8 82.3 77.0
MultiANDA 100.0* 88.2 79.2 77.3 76.0 84.5 78.8

Table B.1. Attack success rates (%) of the proposed and baseline attacks against seven normally trained models. Sign * indicates the
results against white-box models. The best/second results are shown in bold/underlined.

an empirical verification of our methods on a ‘general-
purpose classification model’ trained on non-ImageNet-
based dataset, CLIP [14]. Preliminary evaluation results,
as shown in Table B.3, indicate that ANDA/MultiANDA
also generalized well to such cross-domain model.

B.3. Transferability on ViT-based models

Driven by the curiosity of whether the propose methods
work well on ViT-based architectures, we had conducted
relating experiments using MultiANDA. Preliminary results
in Table B.4 demonstrate notable transferability to ViTs [4],
also outperforming the selected baseline method.

B.4. Composite Transformation Attack

In particular, we implemented the Composite Transforma-
tion (CT) Method with ANDA and MultiANDA (ANDA-
CT and MultiANDA-CT). These input transformation tech-
niques can synergize existing transfer-based attack meth-
ods, as demonstrated in SIM, DIM, and TIM. As shown
by Wang et al. [20], when integrated with VMI-FGSM and
VNI-FGSM, VMI-CT-FGSM and VNI-CT-FGSM are rec-
ognized as state-of-the-art transferable-based attacks [20].
Therefore, we focused our comparison to these methods.
Our results, detailed in Table B.5 and Table B.6, cover
both normally trained and defense models, which demon-
strate that ANDA-CT and MultiANDA-CT consistently en-
hance attack performance in almost all cases compared with



Attack Target model
Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD RS NRP NIPS-r3

In
cR

es
-v

2

BIM 11.1 12.3 7.0 5.1 17.7 13.0 6.0
TIM 27.9 26.6 21.4 18.4 54.8 23.9 23.8
SIM 23.8 23.0 16.4 15.9 22.6 18.3 18.1
DIM 16.2 14.7 10.1 11.7 19.5 14.9 12.3
FIA 48.9 45.0 34.7 24.2 46.1 30.8 42.8

TAIG 49.0 46.8 41.2 12.2 26.0 16.5 13.3
MI-FGSM 22.0 21.6 13.3 13.4 28.8 16.4 17.0
NI-FGSM 21.6 21.9 13.8 13.4 28.6 15.5 16.6

VMI-FGSM 49.2 42.9 38.8 36.0 36.7 25.2 39.2
VNI-FGSM 49.9 44.1 37.7 35.4 36.5 25.6 39.3

ANDA 63.3 58.2 47.3 57.8 43.9 28.5 57.9
MultiANDA 70.3 66.3 61.9 69.9 41.5 31.2 67.8

R
es

N
et

-5
0

BIM 12.3 13.6 7.1 7.4 19.0 13.7 8.1
TIM 34.0 33.9 27.4 24.2 58.2 31.1 30.6
SIM 21.4 20.9 13.1 15.2 23.1 16.1 15.1
DIM 20.8 21.4 12.0 16.9 22.5 15.7 15.3
FIA 44.4 39.5 27.2 30.0 43.5 25.9 35.3

TAIG 39.2 40.8 30.4 29.7 38.1 29.6 34.4
MI-FGSM 26.3 23.9 15.5 17.3 32.2 18.0 20.2
NI-FGSM 26.2 25.2 15.7 17.5 31.9 18.9 19.8

VMI-FGSM 47.4 45.3 31.3 37.7 43.4 27.1 38.7
VNI-FGSM 46.5 45.1 30.4 37.4 43.3 27.1 38.7

ANDA 71.4 65.9 50.7 72.4 50.1 32.9 67.4
MultiANDA 79.7 76.8 64.8 82.3 49.3 34.4 76.3

V
G

G
-1

9

BIM 9.6 10.1 4.4 3.9 17.4 13.4 4.6
TIM 23.0 25.3 17.5 15.0 61.1 18.0 20.1
SIM 11.4 12.0 5.6 8.7 18.4 13.4 7.4
DIM 10.7 10.7 4.7 5.6 17.9 13.6 5.9
FIA 13.3 12.2 8.3 7.1 23.7 14.6 9.8

TAIG 17.7 18.1 10.2 36.9 37.0 34.1 41.9
MI-FGSM 13.0 13.3 6.9 7.2 23.5 15.5 8.9
NI-FGSM 13.9 14.2 6.8 7.2 23.1 14.6 9.3

VMI-FGSM 21.9 20.5 11.6 15.9 30.2 18.4 15.9
VNI-FGSM 21.6 20.5 11.9 16.8 30.4 18.6 15.7

ANDA 20.9 18.0 10.8 22.2 28.2 15.4 16.2
MultiANDA 24.6 22.7 13.7 31.2 27.9 16.2 21.3

In
c-

v3

BIM 11.1 11.6 4.6 3.7 17.4 13.4 4.8
TIM 27.5 27.6 21.3 16.9 56.6 22.8 21.1
SIM 18.1 18.6 8.4 8.6 20.1 15.2 10.8
DIM 13.1 13.3 6.7 5.8 18.2 12.8 8.6
FIA 37.4 36.7 21.3 11.6 37.1 23.5 29.2

TAIG 38.0 36.8 23.9 22.8 31.5 29.6 28.5
MI-FGSM 18.3 17.2 9.0 5.5 24.7 15.7 12.0
NI-FGSM 18.6 17.3 8.6 6.2 25.1 15.3 12.2

VMI-FGSM 36.9 36.9 21.2 19.1 33.8 24.7 27.7
VNI-FGSM 36.4 37.5 22.0 18.9 34.0 25.3 27.4

ANDA 44.4 43.0 25.9 36.5 34.3 23.2 37.0
MultiANDA 54.4 54.4 36.7 52.8 32.3 24.3 46.9

Table B.2. Attack success rates (%) of the proposed and baseline attacks against seven defense models. The best/second results are shown
in bold/underlined.

Attack
Source model

ResNet-50 IncRes-v2 VGG-19
FIA 50.4 46.2 42.6
TAIG 37.6 37.6 36.8
VMI-FGSM 42.3 45.4 43.8
ANDA 51.6 49.6 47.3
MultiANDA 53.0 50.6 48.5

Table B.3. Success rates (%) on CLIP. Best results are shown in
bold/underlined. The zero-shot performance of CLIP on clean Im-
ageNet dataset is 73.7%, i.e., the clean baseline (misclassification)
is 26.3%.

the baselines. Specifically, our proposed methods have
consistently achieved an average success rate increase of

3.5% against black-box normally trained models and 3.6%
against advanced defense models. This significant improve-
ment highlights that the approximated posterior distribution
over perturbations is more effective in crafting diverse ad-
versarial examples than simply adopting data augmentation
techniques.

B.5. Comprehensive Comparison with TAIG

In the experiments illustrated in Table B.1 and Table B.2, we
used the same parameter settings for all baselines including
TAIG and our proposed methods for a fair comparison. To
showcase TAIG’s best performance, we replicated the ex-
periments following TAIG’s official settings. In particular,
we set ϵ = 0.03, 0.05, 0.1 and T = 20, 50, 100. The results
presented in Table B.7 shows the exceptional transferability



Source model
Target model

ViT-L/16 [4] DeiT3-B/16 [18] Swin-B/4 [11] PiT-B [6]
ResNet-50 23.2/28.4/30.5 29.7/45.0/46.6 24.9/38.7/39.3 34.3/52.2/56.3
IncRes-v2 29.0/28.4/30.8 30.9/41.5/43.5 29.8/36.1/38.3 38.6/49.9/53.1
VGG-19 14.7/14.9/14.8 16.5/16.7/16.9 20.5/21.5/22.1 24.9/26.7/28.6

Table B.4. Success rates (%) of VMI-FGSM/ANDA/MultiANDA on ViT-based target model. The best results are shown in bold.

Attack
Target model

Inc-v3 Inc-v4 ResNet-50 ResNet-101 ResNet-152 IncRes-v2 VGG-19

In
cR

es
-v

2 VNI-CT-FGSM 92.8 91.7 88.7 89.0 87.8 99.5* 80.3

VMI-CT-FGSM 93.2 91.5 88.6 88.7 87.5 99.2* 81.8

ANDA-CT 96.7 95.8 94.5 94.5 93.9 99.8* 87.9
MultiANDA-CT 96.8 96.3 94.6 94.4 94.3 99.7* 87.5

R
es

N
et

-5
0 VNI-CT-FGSM 91.0 88.6 100* 97.7 97.6 87.7 79.5

VMI-CT-FGSM 91.1 88.4 100* 97.6 97.2 88.4 80.0

ANDA-CT 95.6 94.5 100* 99.1 98.9 94.4 87.0
MultiANDA-CT 96.1 94.5 100* 99.2 98.7 95.4 85.5

V
G

G
-1

9

VNI-CT-FGSM 84.7 87.9 81.7 75.2 72.4 77.2 100*
VMI-CT-FGSM 84.9 88.9 81.9 75.3 72.9 77.4 100*

ANDA-CT 83.7 89.4 81.4 74.3 73.0 77.5 100*
MultiANDA-CT 85.5 89.6 82.3 74.7 73.4 78.1 100*

In
c-

v3

VNI-CT-FGSM 99.9* 91.2 85.8 83.8 82.8 88.2 81.3

VMI-CT-FGSM 99.8* 91.5 86.3 83.6 82.3 88.2 80.5

ANDA-CT 100* 95.0 90.1 88.3 87.6 93.6 84.9
MultiANDA-CT 100* 95.7 90.4 88.1 88.9 93.7 82.8

Table B.5. Attack success rates (%) against seven normally trained models using the proposed method and the various selected attacks
enhanced by CT with corresponding source models. The best results are shown in bold. Sign * indicates the results against white-box
models.
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Figure B.1. Most examples crafted by our proposed methods suc-
cessfully deceived more than 5 defense models.

performance of adversarial examples generated by ANDA
across all settings. Although there are some variations in
effectiveness against advanced defense models as shown in
Table B.8, our proposed method secures the best results for

every target model in almost all tested scenarios.

B.6. Perturbation Visualization

In previous sections, we compared the attack success rates
of our methods with baseline approaches. This section of-
fers a visual analysis of the adversarial perturbations cre-
ated to assess their effects. We select and display images
where adversarial examples generated by ANDA and Mul-
tiANDA successfully attack all target models, , in contrast
to those by VMI-FGSM, which failed to deceive any. These
experiments were conducted across both normally trained
black-box models and various defense models. Figures B.2
and B.3 demonstrate examples that successfully fooled six
black-box models and seven defense models, respectively.

The illustrations reveal that the perturbations generated
by ANDA and MultiANDA (Rows 5 and 7) target the se-
mantic features of objects more precisely than VMI-FGSM
(Row 3). For instance, in the first column of Figure B.2 and
the third column of Figure B.3, ANDA and MultiANDA



Attack
Target model

Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD RS NRP NIPS-r3

In
cR

es
-v

2 VNI-CT-FGSM 86.9 85.8 83.4 84.3 71.1 73.3 84.8

VMI-CT-FGSM 86.7 85.1 83.8 83.8 71.3 74.4 84.3

ANDA-CT 92.5 91.1 89.1 89.3 77.9 81.1 91.3

MultiANDA-CT 93.6 93.1 91.7 92.1 76.9 81.5 92.9

R
es

N
et

-5
0 VNI-CT-FGSM 84.7 82.6 77.6 81.4 76.2 73.4 82.0

VMI-CT-FGSM 86.1 83.3 76.0 82.1 76.8 72.6 81.9

ANDA-CT 91.9 88.0 81.9 89.3 80.2 78.8 88.5

MultiANDA-CT 92.5 90.4 84.7 90.1 81.0 78.1 89.7

V
G

G
-1

9

VNI-CT-FGSM 55.3 54.8 40.6 54.8 65.9 37.5 51.2

VMI-CT-FGSM 55.8 54.0 41.1 54.9 65.7 37.6 51.5

ANDA-CT 50.2 52.4 39.9 53.6 62.1 33.0 48.1

MultiANDA-CT 57.0 54.2 42.1 58.8 62.2 33.9 53.8

In
c-

v3

VNI-CT-FGSM 81.0 80.5 68.4 72.4 64.9 63.4 73.6

VMI-CT-FGSM 81.7 79.0 66.2 72.1 64.9 65.0 73.2

ANDA-CT 84.9 81.6 67.8 77.0 66.5 62.6 78.2

MultiANDA-CT 88.4 84.9 74.7 82.3 66.9 64.5 81.6

Table B.6. Attack success rates (%) against seven advanced defense models using the proposed method and the various selected attacks
enhanced by CT techniques with corresponding source models. The best results are shown in bold.

Settings
Source

Target
Inc-v3 Inc-v4 ResNet-50 ResNet-101 ResNet-152 IncRes-v2 VGG-19

ϵ
=

0
.0
3

T
=

2
0

IncRes-v2 82.0/49.5 79.2 /41.2 70.4 /39.9 66.4 /37.9 65.5 /35.5 99.2 /93.0* 66.5 /38.6
ResNet-50 82.8 /37.0 76.8 /29.0 99.7 /100.0* 95.0 /67.3 93.9 /62.3 76.8 /23.8 73.6 /40.3
VGG-19 46.8 /29.3 53.6 /27.4 39.6 /26.4 35.1 /22.5 31.7 /18.2 31.6 /15.5 100.0 /100.0*
Inc-v3 99.9 /99.3* 67.4 /34.9 54.6 /30.5 50.7 /28.6 46.7 /24.0 58.0 /27.6 58.6 /36.7

ϵ
=

0
.0
5

T
=

5
0

IncRes-v2 90.4 /66.8 88.7 /60.0 82.7 /55.6 80.8 /52.5 79.2 /49.8 99.8 /95.5* 78.2 /48.4
ResNet-50 78.5 /54.5 75.6 /46.1 92.8 /100.0* 87.1 /85.1 85.8 /81.6 74.3 /42.4 73.9 /50.9
VGG-19 68.0 /42.7 73.7 /44.7 57.9 /37.6 52.4 /33.2 48.7 /28.7 54.2 /27.9 100.0 /100.0*
Inc-v3 100.0 /99.7* 77.6 /51.1 68.3 /45.7 65.0 /41.7 61.4 /36.2 72.4 /45.8 69.0 /45.3

ϵ
=

0
.1

T
=

1
0
0 IncRes-v2 95.9 /80.7 95.0 /75.6 90.7 /70.7 90.2 /69.3 91.1 /66.3 99.9 /97.6* 89.3 /61.8

ResNet-50 98.2 /71.6 97.2 /62.0 100.0 /100.0* 99.9 /94.4 99.8 /91.8 97.3 /63.2 94.1 /64.6
VGG-19 87.7 /59.3 92.2 /63.7 81.5 /55.9 78.6 /45.7 77.0 /44.6 80.5 /44.0 100.0 /100.0*
Inc-v3 100.0 /100.0* 88.7 /67.6 83.0 /59.1 80.0 /53.7 78.8 /53.4 86.7 /64.1 82.9 /55.9

Table B.7. Attack success rates (%) against seven normally trained models using the proposed method and TAIG, under official TAIG
settings (denoted as ANDA/TAIG). The higher success rate of each comparison is highlighted in bold. Sign * indicates the results on
white-box models.

impose perturbations to decisive regions, such as the bird’s
head and the flowers, which are crucial for model predic-
tion. This indicates that our methods precisely approximate
the optimal solution for the maximization problem intro-
duced in Section 2.1, as alterations in these key areas sig-
nificantly increase the loss values. Furthermore, the pro-
nounced denoising effect shown in the visualizations of per-

turbations by MultiANDA highlights the enhanced perfor-
mance enabled by the mixture of Gaussian models.

B.7. Time and Memory Analysis

After thorough analysis of the proposed algorithm, we
found that the computational overhead largely depends on
the number of batch samples during augmentations. The



Settings
Source

Target
Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD RS NRP NIPS-r3

ϵ
=

0
.0
3

T
=

2
0

IncRes-v2 45.5 /32.3 42.8 /31.8 34.1 /25.3 42.7 /21.6 25.1 /24.8 18.3 /20.2 39.7 /23.4
ResNet-50 47.2 /23.3 47.3 /25.2 31.8 /15.8 50.0 /14.7 28.4 /25.0 20.9 /18.3 41.8 /16.7
VGG-19 11.4 /11.3 13.1 /14.3 6.4 /6.7 11.1 /7.5 19.2 /20.8 12.8 /13.8 8.5 /7.4
Inc-v3 27.3 /24.7 29.6 /26.8 14.0 /12.8 21.3 /12.3 21.5 /22.6 15.8 /19.2 18.4 /13.5

ϵ
=

0
.0
5

T
=

5
0

IncRes-v2 58.1 /48.6 55.1 /47.6 43.1 /42.1 55.0 /36.2 35.1 /33.0 24.2 /29.4 53.8 /37.4
ResNet-50 48.7 /38.8 46.7 /37.8 32.2 /28.3 48.1 /28.4 35.1 /32.4 22.6 /25.3 44.7 /28.1
VGG-19 14.6 /18.3 15.0 /18.4 9.0 /11.6 18.4 /13.1 22.2 /24.0 13.5 /14.8 12.4 /12.9
Inc-v3 36.2 /36.5 35.0 /36.0 17.9 /22.9 26.8 /22.3 27.0 /28.0 19.3 /25.9 27.2 /25.5

ϵ
=

0
.1

T
=

1
0
0 IncRes-v2 72.3 /68.6 68.0 /65.7 59.1 /61.2 69.5 /56.8 66.1 /50.1 42.1 /49.1 69.4 /58.1

ResNet-50 81.6 /59.1 76.4 /58.1 62.7 /46.7 83.6 /49.5 71.8 /52.9 78.0 /46.4 43.2 /48.8
VGG-19 28.5 /29.2 26.3 /29.7 17.5 /19.1 38.5 /24.8 45.4 /32.7 20.2 /19.4 28.6 /22.9
Inc-v3 45.3 /50.9 45.4 /52.2 28.6 /35.4 36.4 /34.3 47.8 /39.3 28.8 /39.3 41.3 /38.6

Table B.8. Attack success rates (%) against seven defense models using the proposed method and TAIG, under official TAIG settings
(denoted as ANDA/TAIG). The higher success rate of each comparison is highlighted in bold. The best result for every target model within
each setting is underlined.

cost of collecting statistical information within our method
was negligible. We conducted experimental comparisons
with the baseline methods that also employed augmenta-
tions, under the same settings as in Section A.3. As shown
in the Table B.9 (mean values of five repeat trials), ANDA
even consumes less computational time than the state-of-
the-art baselines, VMI-FGSM and VNI-FGSM. Although
ANDA incurs additional memory overhead for the covari-
ance matrix, the total memory usage is still approximately
1.6% lower than that of FIA.

MultiANDA’s implementation involves repeating the
ANDA process multiple times; hence, the time cost is
roughly K times that of a single ANDA, where K is the
number of ensembled ANDAs. However, as the ANDAs
in MultiANDA operate independently, distributed comput-
ing technology can significantly accelerate the process. For
ANDA, all experiments were conducted on a single GPU
(NVIDIA Geforce RTX 2080 Ti), while for MultiANDA,
we utilized K GPUs to enable distributed processing. Fur-
thermore, when the number of samples per batch augmen-
tation is relatively small (n ≤ 36), batch processing can be
applied to expedite our algorithms. For detailed implemen-
tation, please refer to our publicly released code.
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SIM FIA ANDA VMI VNI

CPU Time (s) 1.366 1.043 1.968 2.629 2.648
GPU Time (s) 1.314 0.982 2.007 2.608 2.624

GPU Memory (GB) 1.390 7.360 7.708 5.080 5.070
Suc. rates (%,IncRes-v2) 35.3 80.4 94.0 68.3 67.9

Table 1. Runtime and memory overhead. Configurations: ResNet-
50, ImageNet-compatible dataset, averaging results of five repeat
trials with the variances roughly equal to 1e-5 s ∼ 1e-3 s.

SIM FIA ANDA VMI VNI

CPU Time (s) 1.366 1.043 1.968 2.629 2.648
GPU Time (s) 1.314 0.982 2.007 2.608 2.624

GPU Memory (GB) 1.390 7.360 7.242 5.080 5.070
Suc. rates (%,IncRes-v2) 35.3 80.4 94.0 68.3 67.9

Table 2. Runtime and memory overhead. Configurations: ResNet-
50, ImageNet-compatible dataset, averaging results of five repeat
trials with the variances roughly equal to 1e-5 s ∼ 1e-3 s.

I am hereby complaining about the reviewers R4. On the
premise that I explicitly discussed ADT, TIM and SIM and
conducted experiments on TIM and SIM, R4 gave negative
comments that I did not include these methods in our pa-
per. He/She argued that our method had poor performance
when he/she failed to correctly understand the Figure 4.
Note that Figure 4 is a diagram used to support the supe-
rior performance of our method, but R4 thought that our
method was inferior to VMI-FGSM (a baseline method),
which shows his/her unprofessional. Reviewer R4 also ad-
vertised that he/she reviewed the full manuscript, which
shows that his/her review was irresponsible and arbitrary.
When there are irresponsible and unprofessional reviewers
among all reviewers, I am worried that they won’t pay atten-
tion to my rebuttal and hastily give negative comments to
decide whether my paper is accepted or not. In addition, as
a reviewer myself, I spent nearly a week reviewing papers.
I tried my best to give fair comments. However, when I
saw that other reviewers had only short and incomplete com-
ments on my paper, I felt unfair about it. If the meta reviewer
does not intervene, the behavior of these two reviewers will
dampen ICML’s enthusiasm for paper submission. I hope
my appeal can be valued by the meta reviewer. If you can,
please AC personally review our manuscript & rebuttal and
give a fair and professional comments. Thank you!

Table B.9. CPU Time, GPU Time, GPU Memory(GB) and at-
tacking performance of different methods. The source model and
target model are ResNet-50 and IncRes-v2, respectively.

B.8. Optimization Trajectory

To evaluate the optimization efficacy of ANDA, we ana-
lyzed the optimization trajectories of ANDA, and baseline
methods VMI-FGSM and VNI-FGSM. For enhanced vi-
sualization, we employed Principal Component Analysis
(PCA) [8] and projected the iteratively optimized samples
(including original images and their corresponding adver-
sarial examples of 10 iterations against Inc-v3) along the
top four principal components (v1-v2 and v3-v4). We ran-
domly chose the initial inputs and selected the ones that suc-
ceeded in deceiving the target black-box models. We visu-
alized the iteration paths of these algorithms on the 2D loss
landscape against eight black-box models. The results, as
depicted in Figure B.4, demonstrate that ANDA finds more
efficient optimization paths than VMI/VNI-FGSM, leading
to enhanced optimization outcomes.

C. Ablation Study
In ANDA, we integrate two components, namely data aug-
mentations and the approximation of perturbation distribu-
tion, to enhance the transferability of adversarial examples.
This section examines the individual contributions of these
components to ANDA’s attack performance and the impact
of key hyper-parameters. Note that white-box attack perfor-
mance may reach 100%. Therefore, we focus on black-box
settings to precisely evaluate the efficacy of each compo-
nent. We select seven representative models, including four
normally and three adversarially trained models, as targets.

C.1. Number of Augmentation Batches

To determine the contribution of augmentation to ANDA,
we compared results with and without augmentation,
i.e., S includes one sample {x(t)

adv} or n samples
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Figure B.2. Perturbation visualization of the examples that fool the
normally trained models

Clean Images

Perturbed Images
by VMI-FGSM

Perturbation
by VMI-FGSM

Perturbed Images
by ANDA

Perturbation
by ANDA

Perturbed Images
by MultiANDA

Perturbation
by MultiANDA

Figure B.3. Perturbation visualization of the examples that fool the
defense models

{AUGi(x
(t)
adv)}ni=1, respectively. Figure C.1 (a) illustrates

that batch augmentation significantly boosts performance in
various black-box models. The main reason is that augmen-
tation introduces stochasticity into the iterative optimization
procedure, forming a SGA procedure which help to charac-
terize the asymptotic Gaussian distributions that effectively
enhances the robustness of the results.

Furthermore, we analyzed the impact of varying the aug-
mented batch number n. Considering both the attack perfor-
mance and computational overhead, we adjusted n to rep-
resent the perfect squares of the number of translated pix-
els in one dimension, ranging from 4 to 49 (refer detailed
augmentation implementation in Section C.3). We observe
from Figure C.2 that the overall attack performance gener-
ally improves with an increase in n.

C.2. Effect of Perturbation Distribution

We further examined the impact of the approximated pertur-
bation distribution, specifically the accumulation of histori-
cal gradients along the optimization trajectory. The results,
depicted in both Figure C.1 (b) and Figure C.2, demonstrate
that the attack effectiveness is significantly enhanced by
the statistical analysis of historical gradients. Notably, the

dashed lines in Figure C.2 are consistently higher than their
corresponding solid lines of the same color, underscoring
the considerable value of incorporating historical gradient
data into the optimization process.

C.3. Magnitude of augmentations

Another important aspect to explore is the extent to which
image translations provide the most benefits. For these
translations, we utilize tx for the horizontal direction and ty
for the vertical direction in the affine transformation, repre-
senting the degree of translation. Consider a scenario where
we have a source image xsrc and a translated image xtgt.
We can then formulate the translation process using the fol-
lowing affine transformation in homogeneous representa-
tion. This process involves mapping the ith pixel points
from xsrc to xtgt: x′

i

y′i
1


︸ ︷︷ ︸

xtgt

=

 1 0 tx
0 1 ty
0 0 1

 xi

yi
1


︸ ︷︷ ︸

xsrc

The magnitudes of tx and ty represent the extent of
translations. Specifically, we define two parameters for
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v1

v2

CE Loss

v3

v4

CE Loss

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

ANDA VMI_FGSM VNI_FGSM

(c) VGG-19
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Figure B.4. Visualization of optimization trajectories for generated adversarial examples by ANDA, VMI-FGSM, and VNI-FGSM

this process: n, representing the number of augmentations,
and Augmax, defined as max(abs(tx), abs(ty)). It is im-
portant to note that the valid range for Augmax is [0, 2],
and n takes on values that are perfect squares in our ex-
periments. For example, with n = 25 and Augmax =
0.3, we evenly distribute

√
n samples across the interval

(−Augmax,Augmax) for both tx and ty. This results in
a set of tx values, denoted as Tx, and a set of ty values,

denoted as Ty . To illustrate, consider Tx as an example:

txi = −Augmax+ i× 2Augmax√
n− 1

Tx = {txi|i = 0, 1, . . . ,
√
n− 1}

The process to form Ty follows the same approach as Tx.
We then calculate the Cartesian product of these two sets to
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Figure C.1. Attack success rates (%) on seven selected models with adversarial examples generated by ANDA on Inc-v3 model
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Figure C.2. Attack success rates (%) on seven selected mod-
els with adversarial examples generated by ANDA on Inc-v3
model with varying the augmented batch number n. Two groups
of ASRs, with or without accumulating previous gradients, are
shown.
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Figure C.3. Attack success rates (%) on the seven models of ad-
versaries generated by ANDA on Inc-v3 model with varying the
value of Augmax.

obtain a series of (tx, ty) pairs, which are used for further
translation operations. The function AUG(x) represents a
set of translated images generated from these operations:
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Figure C.4. Attack success rates (%) on target models with adver-
saries generated by ANDA on VGG-19 model when varying the
value of Augmax from 0.1 to 1.9.

Tx × Ty = {(tx, ty)|tx ∈ Tx ∧ ty ∈ Ty}
AUG(x) = {AUGi(x),where i is the index of Tx × Ty}

As illustrated in Figure C.3, we present the Attack Suc-
cess Rates (ASRs) on various models while varying the
value of Augmax. The results indicate that image trans-
lations within a suitable range can enhance black-box trans-
ferability. However, overly intense transformations lead to
a loss of intrinsic image information, resulting in decreased
attack performance. To illustrate this effect, we extended
the range of Augmax and plotted the attack success rates,
along with specifically translated images at different values
of Augmax, as shown in Figure C.4. It is observed that
moderate translation extents, such as Augmax = 0.3, are
beneficial. Yet, when the value of Augmax exceeds 0.5,
there is a significant drop in attack performance, even on
a white-box model like VGG-19. This suggests that while
appropriate image transformations can promote adversarial
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Figure C.5. Attack success rates (%) of normally trained models (top row) and defense models (bottom row) with samples generated by
MultiANDA. The results are shown across different source models (indicated by *), with a varying number of ANDAs. Each column
corresponds to a specific source model, illustrating the impact of the number of ANDAs on the effectiveness of the attacks.

transferability, excessive alterations can result in the loss of
crucial information.

C.4. Augmentation Types

We also empirically explored the impact of different types
of augmentations. Translation operations yielded effects
similar to random resize and padding, as discussed in
[24, 26]. Although our methods could potentially bene-
fit from stochastic augmentations, this paper focuses solely
on deterministic operations, such as translations, to enable
more stable quantitative analysis. While scale operations,
as in [10], are feasible, their effectiveness is inherently lim-
ited by the nature of the transformation, showing no fur-
ther improvement beyond n > 5 augmentations. Addition-
ally, augmentations like uniform additive noise [12, 20],
Gaussian additive noise[23], and Bernoulli multiplicative
noise[21] resulted in only modest performance enhance-
ments in our experiments.

C.5. Number of Ensemble Models for MultiANDA

We investigated the influence of the number of components
(K) in MultiANDA on performance across our selection
of models, including six black-box normally trained mod-
els and seven defense models. The results, as shown in
Figure C.5, indicate that the performance of MultiANDA
steadily improves with an increasing number of ANDAs.
This is particularly evident with defense models, where
MultiANDA achieves approximately a 10% improvement

in success rates for five of the defense models. These find-
ings further suggest that sampling from a Gaussian mixture
distribution enhances sample diversity, thereby boosting the
transferability of the perturbed samples.
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