Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal
Distribution Learning
(Supplementary Materials)

A. Implementation Details

A.1. Algorithm for Multiple Asymptotically Normal
Distribution Attack

In Section 3, we propose the Multiple Asymptotically Nor-
mal Distribution Attacks (MultiANDA), a novel method
that explicitly characterizes perturbations inferred from a
learned distribution. Specifically, in Section 3.2, we first
elaborate on the procedure of single ANDA, which approx-
imates the posterior distribution over the adversarial per-
turbations by leveraging the asymptotic normality property
of stochastic gradient ascent (SGA). Subsequently, in Sec-
tion 3.3, we apply an ensemble strategy on ANDA to es-
timate a mixture of Gaussian distributions, enhancing ex-
ploration of the potential optimization space. This leads to
further improved generalization performance of the attacks,
facilitating the generation of more diverse and transferable
adversarial examples. The detailed implementation of Mul-
tiANDA is shown in Algorithm A.1.

A.2. Datasets and Models

In this subsection, the datasets and models employed in
our experiments are detailed. In addition to the evaluation
experiments introduced in Section 4, we provide more re-
sults on the ViT-based [4, 6, 18] and CLIP [14] models in
this supplementary material, which are used to illustrate the
generalizability of our proposed methods to various model
architectures and the performance on the cross-domain task.

Datasets: The dataset is ImageNet- 1k, which is identical
to the one described in Section 4.1.

Models: We considered two categories of target
models for evaluation: seven normally trained models
and seven advanced defense models. The first cate-
gory includes Inception-v3 (Inc-v3) [16], Resnet-v2-50
(ResNet-50), Resnet-v2-101 (ResNet-101), Resnet-v2-152
(ResNet-152) [5], Inception-v4 (Inc-v4), Inception-ResNet-
v2 (IncRes-v2) [17] and VGG-19 [15], where Inc-v3,
ResNet-50, IncRes-v2 and VGG-19 are also used as the
white-box source models to generate adversarial exam-
ples. The defense models contain three adversarially trained
models: Inc-v3,,,s3, Inc-v3.,,4 and IncRes-v2.,,s [19]; the

Algorithm A.1: Multiple Asymptotically Normal
Distribution Attacks

Input: z: clean image z € RY; y: ground-truth label; f:
pre-trained source model;

Parameters: 7' # iterations; e: perturbation magnitude;
n: # batch samples for augmentation; M: # sampling
examples; K: # ensemble ANDAs; «y: the radius of
uniform noise;

Output: z,4,: Adversarial examples;

Initialize o < ¢/T, xo <z
fork =0to K —1do
Initialize the uniform noise in parallel
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High-level representation Guided Denoiser (HGD) [9]; the
Neural Representation Purifier (NRP) [13]; the Random-



ized Smoothing (RS) [1]; and the ‘Rand-3’ submission in
the NIPS 2017 defense competition (NIPS-13).

We aim to utilize ANDA/MultiAND to thoroughly test
the defense effectiveness of various strategies in recently
proposed defense approaches. The defense strategies and
the implementation details of these selected advanced de-
fense models are presented as follows:

* Three adversarially trained models, namely Inc-v3.,,s3 ,
Inc-v3.,,s4 and IncRes-v2.,s [19];

* High-level representation guided denoiser (HGD, rank-1
submission in the NIPS 2017 defense competition) [9];

* Rand-3 submission in the NIPS 2017 defense competition
(NIPS-r3) !;

* Randomized Smoothing (RS) [1]

* Neural Representation Purifier (NRP) [13]

We adopted the implementation of NRP as described in
[20], and sourced the remaining defense methods from their
official implementations. For all defense methods, we uti-
lized Inc-v3.,s3 as the backbone architecture.

For the ViT series of models, four mainstream models:
ViT-L/16 [4], DeiT3-B/16 [18], Swin-B/4 [11] and PiT-B
[6] are selected. For the evaluation against the cross-domain
task, we choose the renowned multimodal model CLIP [14].

A.3. Hyper-Parameters

The basic attack settings were consistent with the work
[2, 20]: the maximum perturbation of ¢ = 16, and the num-
ber of iterations 7' = 10 and step size a = ¢/T = 1.6.
We carefully tuned the specific hyper-parameters for each
baseline (e.g., the sampling number in VMI-FGSM, the en-
semble number in FIA, etc.), and the best results were
recorded.

For ANDA, we set the number of augmented samples
as 25 (i.e., n = 25), and the image augmenting parame-
ter Augmax (refer detailed explanation in Section C.3) as
0.3 if not specified. For MultiANDA, the default number
of ANDA components is 5 (i.e., K = 5). To ensure the
random starts of each MultiANDA component, we added
small uniform noises u to the original sample x, where
u ~ U(—~,7), as shown in Algorithm A.1. To balance the
diversity among the ensemble components and the original
semantic information of inputs, we set the radius of uni-
form noise vy = %. Regarding the adopted baselines, we
employed the following corresponding hyper-parameters:
¢ For MI-FGSM, NI-FGSM and their variants, we set the

decay factor 1 = 1.0. For VMI-FGSM [20], n = 20 and

5 =1.5.

* For DIM [24], the transformation probability was set to

0.5. For SIM [20], the number of scale copies is 5. For

TIM [3], we tuned the Gaussian kernel size in {15 x 15,

'https://github.com/anlthms /nips-2017/tree/
master/mmd

7 x 7} with the same standard deviation o = 3 by refer-
ring their official code”.

* For FIA [21], we followed the official settings in the cor-
responding paper.

» For TAIG [7], we chose TAIG-S as the baseline. To en-
sure a fair comparison in the single form, we adhered to
our basic settings (¢ = 16, 7' = 10, and the number of
turning points £ = 20). For a detailed comparison show-
casing the best performance of TAIG, refer to Section B.5.

B. Additional Experimental Results
B.1. Full evaluation results

Taking advantage of the extensive space in this appendix,
we present the complete experimental results for the base-
line methods and the proposed ANDA/MultiAND. These
encompass all seven normally trained models and seven
advanced defense models, as detailed in Table B.1 and
Table B.2, respectively. Notably, additional experiments
involving Inc-v4, ResNet-101, and Inc-v3.,s4—models
with structures similar to Inc-v3, ResNet-50 and Inc-
v3ens3—further validate the effectiveness of our methods.
An intriguing finding is that using ResNet-50 as the source
model yields the best attacking performance. This aligns
with the conclusion drawn by Wu et al. [22]. They empiri-
cally studied this observation and disclosed the skip connec-
tion provided the actual contribution to this enhancement.
Wu et al. [22] and Zhu et al. [25] further boost the trans-
ferability by exploiting this finding. Moreover, the com-
paratively modest results on RS models have sparked our
interest for future research.

We conducted a similar statistical analysis, as shown in
Figure 3 in the main body, on defense models to determine
the numbers of black-box target models that each generated
example can deceive. The source model remains ResNet-
50. Figure B.1 shows 15% and 25% of the examples gener-
ated by ANDA and MultiANDA managed to fool all seven
models (as seen in the rightmost bars), respectively. In con-
trast, only 5% examples crafted by VMI-FGSM achieved
this. In addition, the failure rate of VMI-FGSM across
all seven models stands at 20%, compared to only 5% for
ANDA. These results indicate that the generated adversaries
by ANDA and MultiANDA are more diverse and have bet-
ter transferability than those by VMI-FGSM.

B.2. Cross-domain attack on CLIP

Admittedly, using a surrogate with the identical dataset as
target models for conducting black-box attacks is an ideal
setting, typically only feasible in lab experiments or when
targeting ‘general-purpose classification models’ trained on
ImageNet-based datasets, as in our case. We conducted

’https : / / github .
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Target model

Attack 3 Tevd  ResNet30  ResNet-T0T  ResNet 152 TncResv2  VGG-T9

BIM 363 287 256 21 206 99.3% 378

TIM 831 353 365 332 320 36.0% 6.2

SIM 589 509 478 417 414 99.6% 98

o DIM 546 51 414 372 366 98.2% 50.0
) FIA 822 783 753 752 724 890 807
£ | TAIG 739 691 63.4 605 58.4 95.0% 57.4
2| NLFGsM 619 525 495 475 447 992 647
MLFGSM | 603 534 493 456 430 08,8 64.6
VMLEGSM | 811 769 69.6 69.0 66.4 99.3% 735
VNLFGSM | 809 772 700 68.6 658 99.4% 7338
ANDA 93.0 90.5 864 83.9 83.7 99.8% 8238
MuliANDA | 939 921 87.1 86.1 85.6 9.8 84.3

BIM 332 266 59.7% 705 639 209 B4

TIM 73 413 77.0¢ 49.4 476 308 68.8

SIM 486 408 100.0¢ 875 837 353 50.9

2 DIM 619 554 99.9% 88.0 83.6 475 61.1
5 FIA 862 839 99.6% 953 945 80.4 88.3
Z | TG 624 558 1000 89.9 86.1 519 587
£ | NiFosm 596 527 99.7% $8.0 85.4 481 67.0
MLFGSM | 585 526 99,7+ 88.2 859 486 67.4
VMLEGSM | 753 69.9 99.9% 955 93.4 683 76.4
VNLEGSM | 754 69.1 99.8% 95.0 929 67.9 756
ANDA 95.6 94.3 100.0* 99.0 98.9 94.0 89.5
MuliANDA | 965 949 1000+ 99.2 99.2 95.0 90.1

BIM B35 239 187 174 37 99 99.0%

TIM 45 353 348 315 302 236 100.0%

SIM 377 433 344 292 252 236 100.0%

> DIM 317 358 264 219 192 164 99.9*
= FIA 574 613 507 449 409 27 100.0°
2| TG 88 526 136 358 347 339 100.0%
> | NLFGSM 86 487 395 348 202 304 999*
MIFGSM | 447 481 39.4 347 289 308 999%
VMLEGSM | 627 653 56.7 493 465 486 100.0%
VNLFGSM | 632 656 56.7 50.4 166 488 100.0¢
ANDA 744 80.6 64.1 59.8 564 61.5 100.0*
MuliANDA | 754 821 66.1 615 586 635 100.0%

BIM 1005 241 203 16.4 157 156 33

TIM 643 359 359 316 306 254 70.4

SIM 1000 433 382 329 301 359 22

DIM 1000¢ 425 317 269 255 314 455

2 FIA 983 854 784 76.1 753 812 84.5
¢ TAIG 99.7% 596 533 478 459 567 542
= | NLFGSM | 100.0¢ 449 400 373 352 39.9 56.9
MIFGSM | 100.0¢ 451 402 362 35.1 403 57.1
VMLEGSM | 100.0¢ 717 630 589 59.3 68.6 70.3
VNLFGSM | 1000% 726 62.4 583 587 677 69.7
ANDA | 100.0F 857 761 741 728 823 770
MuliANDA | 100.0¢  88.2 792 773 760 845 788

Table B.1.

Attack success rates (%) of the proposed and baseline attacks against seven normally trained models. Sign * indicates the

results against white-box models. The best/second results are shown in bold/underlined.

an empirical verification of our methods on a ‘general-
purpose classification model’ trained on non-ImageNet-
based dataset, CLIP [14]. Preliminary evaluation results,
as shown in Table B.3, indicate that ANDA/MultiANDA
also generalized well to such cross-domain model.

B.3. Transferability on ViT-based models

Driven by the curiosity of whether the propose methods
work well on ViT-based architectures, we had conducted
relating experiments using MultiANDA. Preliminary results
in Table B.4 demonstrate notable transferability to ViTs [4],
also outperforming the selected baseline method.

B.4. Composite Transformation Attack

In particular, we implemented the Composite Transforma-
tion (CT) Method with ANDA and MultiANDA (ANDA-
CT and MultiANDA-CT). These input transformation tech-
niques can synergize existing transfer-based attack meth-
ods, as demonstrated in SIM, DIM, and TIM. As shown
by Wang et al. [20], when integrated with VMI-FGSM and
VNI-FGSM, VMI-CT-FGSM and VNI-CT-FGSM are rec-
ognized as state-of-the-art transferable-based attacks [20].
Therefore, we focused our comparison to these methods.
Our results, detailed in Table B.5 and Table B.6, cover
both normally trained and defense models, which demon-
strate that ANDA-CT and MultiANDA-CT consistently en-
hance attack performance in almost all cases compared with



Target model

Attack Thcv3onas  Thcv3enaa  TncResvZ.,, HGD RS NRP  NIPST3
BIM 1 2.3 70 51 177 130 60
TIM 279 26.6 214 184 548 239 238
SIM 238 23.0 16.4 159 226 183 181
o DIM 16.2 147 10.1 1.7 195 149 123
3 FIA 489 45.0 347 242 461 308 428
& TAIG 49.0 46.8 412 122 260 165 13.3
2 | MIFGSM 20 21.6 133 134 288 164 170
NL-FGSM 216 219 13.8 134 286 155 16.6
VMIL-FGSM 492 429 38.8 360 367 252 392
VNI-FGSM 49.9 44.1 377 354 365 256 393
ANDA 63.3 58.2 47.3 57.8 439 285 57.9
MultiANDA 70.3 66.3 619 699 415 312 678
BIM 23 36 71 74 190 137 g1
TIM 34.0 339 274 242 582 311 306
SIM 214 20.9 13.1 152 231 161 15.1
2 DIM 20.8 214 12.0 169 225 157 153
- FIA 44.4 39.5 272 300 435 259 353
z TAIG 39.2 40.8 30.4 207 381 296 344
& | MIFGSM 263 23.9 15.5 173 322 180 202
NL-FGSM 262 252 15.7 175 319 189 1938
VMI-FGSM 47.4 453 313 377 434 2711 387
VNI-FGSM 46.5 45.1 30.4 374 433 271 387
ANDA 714 59 507 72400 129 64
MultiANDA 797 76.8 64.8 823 493 344 763
BIM 96 0.1 74 30 174 134 76
TIM 23.0 253 17.5 150 6L1 180  20.1
SIM 114 12.0 5.6 87 184 134 7.4
o DIM 10.7 10.7 47 56 179 136 59
- FIA 13.3 122 8.3 71 237 146 9.8
8 TAIG 177 18.1 10.2 369 370 341 419
> | MLFGSM 13.0 13.3 6.9 72 235 155 8.9
NI-FGSM 13.9 14.2 6.8 72 231 146 9.3
VMI-FGSM 21.9 20.5 1.6 159 302 184 159
VNLFGSM 216 205 11.9 168 304 186 157
ANDA 200 8.0 108 W2 W2 154 162
MultiANDA 246 27 13.7 32 279 162 213
BIM 1 1.6 76 37 174 134 73
TIM 275 276 213 169 566 228 2Ll
SIM 18.1 18.6 8.4 86 201 152 108
DIM 13.1 13.3 6.7 58 182 1238 8.6
i FIA 374 36.7 213 1.6 371 235 292
g TAIG 38.0 36.8 239 28 305 296 285
= | MLFGSM 18.3 172 9.0 55 247 157 120
NI-FGSM 18.6 17.3 8.6 62 251 153 122
VMIL-FGSM 36.9 36.9 212 190 338 247 2717
VNLFGSM 36.4 375 2.0 189 340 253 274
ANDA 744 B0 759 365 343 232 370
MultiANDA 544 54.4 36.7 528 323 243 469

Table B.2. Attack success rates (%) of the proposed and baseline attacks against seven defense models. The best/second results are shown

in bold/underlined.

Attack Source model
ResNet-50 IncRes-v2 VGG-19
FIA 50.4 46.2 42.6
TAIG 37.6 37.6 36.8
VMI-FGSM | 42.3 454 43.8
ANDA 51.6 49.6 473
MultiANDA | 53.0 50.6 48.5

Table B.3. Success rates (%) on CLIP. Best results are shown in
bold/underlined. The zero-shot performance of CLIP on clean Im-
ageNet dataset is 73.7%, i.e., the clean baseline (misclassification)
is 26.3%.

the baselines. Specifically, our proposed methods have
consistently achieved an average success rate increase of

3.5% against black-box normally trained models and 3.6%
against advanced defense models. This significant improve-
ment highlights that the approximated posterior distribution
over perturbations is more effective in crafting diverse ad-
versarial examples than simply adopting data augmentation
techniques.

B.S. Comprehensive Comparison with TAIG

In the experiments illustrated in Table B.1 and Table B.2, we
used the same parameter settings for all baselines including
TAIG and our proposed methods for a fair comparison. To
showcase TAIG’s best performance, we replicated the ex-
periments following TAIG’s official settings. In particular,
we set e = 0.03,0.05,0.1 and T' = 20, 50, 100. The results
presented in Table B.7 shows the exceptional transferability



Table B.4. Success rates (%) of VMI-FGSM/ANDA/MultiANDA on ViT-based target model. The best results are shown in bold.

Source model Target model

ViT-L/16 [4] DeiT3-B/16 [18]  Swin-B/4 [11] PiT-B [6]
ResNet-50 23.2/28.4/30.5 29.7/45.0/46.6 24.9/38.7/39.3 34.3/52.2/56.3
IncRes-v2 29.0/28.4/30.8 30.9/41.5/43.5 29.8/36.1/38.3 38.6/49.9/53.1
VGG-19 14.7/14.9/14.8 16.5/16.7/16.9 20.5/21.5/22.1 24.9/26.7/28.6

Attack Target model

Inc-v3 Inc-v4 ResNet-50 ResNet-101  ResNet-152  IncRes-v2  VGG-19

o | VYNI-CT-FGSM 92.8 91.7 88.7 89.0 87.8 99.5% 80.3
% VMI-CT-FGSM 932 91.5 88.6 88.7 87.5 99.2°% 81.8
é ANDA-CT 96.7 95.8 94.5 94.5 93.9 99.8* 87.9
~ | MultiANDA-CT 96.8 96.3 94.6 944 94.3 99.7%* 87.5
o | VNI-CT-FGSM 91.0 88.6 100* 97.7 97.6 87.7 79.5
g VMI-CT-FGSM 91.1 88.4 100* 97.6 97.2 88.4 80.0
% ANDA-CT 95.6 94.5 100* 99.1 98.9 94.4 87.0
# | MuliANDA-CT 96.1 94.5 100* 99.2 98.7 95.4 85.5
VNI-CT-FGSM 84.7 87.9 81.7 75.2 72.4 77.2 100*

g VMI-CT-FGSM 84.9 88.9 81.9 75.3 72.9 77.4 100*
g ANDA-CT 83.7 89.4 81.4 74.3 73.0 77.5 100*
MultiANDA-CT 85.5 89.6 82.3 74.7 734 78.1 100*
VNI-CT-FGSM 99.9%* 91.2 85.8 83.8 82.8 88.2 81.3

"?‘ VMI-CT-FGSM 99.8%* 91.5 86.3 83.6 82.3 88.2 80.5
E ANDA-CT 100* 95.0 90.1 88.3 87.6 93.6 84.9
MultiANDA-CT 100* 95.7 90.4 88.1 88.9 93.7 82.8

Table B.5. Attack success rates (%) against seven normally trained models using the proposed method and the various selected attacks
enhanced by CT with corresponding source models. The best results are shown in bold. Sign * indicates the results against white-box

models.
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Figure B.1. Most examples crafted by our proposed methods suc-
cessfully deceived more than 5 defense models.

performance of adversarial examples generated by ANDA
across all settings. Although there are some variations in
effectiveness against advanced defense models as shown in
Table B.8, our proposed method secures the best results for

every target model in almost all tested scenarios.

B.6. Perturbation Visualization

In previous sections, we compared the attack success rates
of our methods with baseline approaches. This section of-
fers a visual analysis of the adversarial perturbations cre-
ated to assess their effects. We select and display images
where adversarial examples generated by ANDA and Mul-
tiANDA successfully attack all target models, , in contrast
to those by VMI-FGSM, which failed to deceive any. These
experiments were conducted across both normally trained
black-box models and various defense models. Figures B.2
and B.3 demonstrate examples that successfully fooled six
black-box models and seven defense models, respectively.
The illustrations reveal that the perturbations generated
by ANDA and MultiANDA (Rows 5 and 7) target the se-
mantic features of objects more precisely than VMI-FGSM
(Row 3). For instance, in the first column of Figure B.2 and
the third column of Figure B.3, ANDA and MultiANDA



Attack Target model
Inc-v3enss Inc-v3ensa  IncRes-v2.,.s HGD RS NRP NIPS-r3
“ VNI-CT-FGSM 86.9 85.8 83.4 843 71.1 733 84.8
% VMI-CT-FGSM 86.7 85.1 83.8 83.8 713 744 84.3
é ANDA-CT 92.5 91.1 89.1 893 779 8l1.1 91.3
MultiANDA-CT 93.6 93.1 91.7 921 769 815 92.9
o | VNI-CT-FGSM 84.7 82.6 77.6 814 762 734 82.0
?-a') VMI-CT-FGSM 86.1 83.3 76.0 82.1 76.8 72.6 81.9
% ANDA-CT 91.9 88.0 81.9 89.3 80.2 78.8 88.5
a MultiANDA-CT 92.5 90.4 84.7 90.1 81.0 78.1 89.7
VNI-CT-FGSM 55.3 54.8 40.6 548 659 375 51.2
g VMI-CT-FGSM 55.8 54.0 41.1 549 657 37.6 51.5
(>3 ANDA-CT 50.2 52.4 39.9 53.6  62.1 33.0 48.1
MultiANDA-CT 57.0 54.2 42.1 588 622 339 53.8
VNI-CT-FGSM 81.0 80.5 68.4 724 649 634 73.6
"’? VMI-CT-FGSM 81.7 79.0 66.2 72.1 649 65.0 73.2
,:‘:) ANDA-CT 84.9 81.6 67.8 770 665 62.6 78.2
MultiANDA-CT 88.4 84.9 74.7 823 669 645 81.6

Table B.6. Attack success rates (%) against seven advanced defense models using the proposed method and the various selected attacks
enhanced by CT techniques with corresponding source models. The best results are shown in bold.

Settings N Inc-v3 Inc-v4 ResNet-50  ResNet-101  ResNet-152  IncRes-v2 VGG-19
® o IncRes-v2 82.0/49.5 79.2/41.2 70.4 /39.9 66.4/37.9 65.5/35.5 99.2/93.0% 66.5 /38.6
S ResNet-50 82.8/37.0 76.8/29.0  99.7/100.0% 95.0/67.3 93.9/62.3  76.8/23.8 73.6 /40.3
I J( VGG-19 46.8/29.3 53.6/27.4 39.6 /26.4 35.1/22.5 31.7/182  31.6/15.5 100.0 /100.0*
© Inc-v3 99.9/99.3*  67.4/34.9 54.6 /30.5 50.7 /28.6 46.7/24.0  58.0/27.6 58.6 /36.7
. IncRes-v2 90.4/66.8  88.7 /60.0 82.7/55.6 80.8 /52.5 79.2/49.8 99.8 /95.5% 78.2 /48.4
i ResNet-50 78.5/54.5 75.6 /46.1 92.8 /100.0* 87.1/85.1 85.8/81.6  74.3/42.4 73.9 /50.9
I J{ VGG-19 68.0 /42.7  73.7/44.7 57.9/37.6 52.4/33.2 48.7/28.7  54.2/27.9 100.0 /100.0*
© Inc-v3 100.0 /99.7*%  77.6/51.1 68.3 /45.7 65.0 /41.7 61.4/36.2  72.4/45.8 69.0 /45.3

- IncRes-v2 95.9/80.7 95.0/75.6 90.7 /70.7 90.2 /69.3 91.1/66.3  99.9 /97.6* 89.3/61.8
S S ResNet-50 98.2/71.6 97.2/62.0 100.0 /100.0* 99.9 /94.4 99.8/91.8 97.3/63.2 94.1 /64.6
I VGG-19 87.7/59.3  92.2/63.7 81.5/55.9 78.6 /45.7 77.0/44.6  80.5/44.0 100.0/100.0*
v Inc-v3 100.0 /100.0*  88.7 /67.6 83.0/59.1 80.0 /53.7 78.8/53.4  86.7/64.1 82.9/55.9

Table B.7. Attack success rates (%) against seven normally trained models using the proposed method and TAIG, under official TAIG
settings (denoted as ANDA/TAIG). The higher success rate of each comparison is highlighted in bold. Sign * indicates the results on

white-box models.

impose perturbations to decisive regions, such as the bird’s
head and the flowers, which are crucial for model predic-

tion. This indicates that our methods precisely approximate

the optimal solution for the maximization problem intro-

duced in Section 2.1, as alterations in these key areas sig-

nificantly increase the loss values. Furthermore, the pro-
nounced denoising effect shown in the visualizations of per-

B.7. Time and Memory Analysis

turbations by MultiANDA highlights the enhanced perfor-
mance enabled by the mixture of Gaussian models.

After thorough analysis of the proposed algorithm, we
found that the computational overhead largely depends on

the number of batch samples during augmentations. The



Settings w Inc-v3enss  Inc-v3ensa  IncRes-v2ens HGD RS NRP  NIPS-r3
Source

- IncRes-v2 455/323  428/318  34.1/253 427/21.6 25.1/248 183/20.2 39.7/234
S S ResNet:50 | 47.2/233  47.3/252  31.8/158 50.0/147 284/250 20.9/183 41.8/16.7
I VGG-19 1L4/113  13.1/143 64/67 1L1/7.5 192/208 128/138  8.5/74
¢ Inc-v3 273247 29.6/268  140/128 213/123 215/22.6 158/19.2 18.4/13.5
- IncRes-v2 58.1/486 55.1/47.6  43.0/42.1 55.0/362 35.1/33.0 242294 53.8/374
22 ResNet-50 48.7/388 46.7/378  322/283 48.1/284 35.1/324 226/253 44.7/28.1
i VGG-19 146/183  15.0/18.4 9.0/11.6 184/13.1 222240 135/148 124/12.9
- Inc-v3 362/36.5  350/360  17.9/229 268/22.3 27.0/280 193/259 27.2/255
- TncRes-v2 723/686 6807657  59.1/612 69.5/568 66.1/50.1 42.1/49.1 69.4/58.1
39 ResNet-50 | 8L6/59.1 764/58.1  627/467 83.6/495 71.8/529 78.0/464 43.2/48.8
I VGG-19 285/292  263/29.7  175/191 385/248 454/327 202/194 28.6/22.9
o Inc-v3 453/509 454/522  28.6/354 36.4/343 47.8/393 28.8/39.3 413/38.6

Table B.8. Attack success rates (%) against seven defense models using the proposed method and TAIG, under official TAIG settings
(denoted as ANDA/TAIG). The higher success rate of each comparison is highlighted in bold. The best result for every target model within

each setting is underlined.

cost of collecting statistical information within our method
was negligible. We conducted experimental comparisons
with the baseline methods that also employed augmenta-
tions, under the same settings as in Section A.3. As shown
in the Table B.9 (mean values of five repeat trials), ANDA
even consumes less computational time than the state-of-
the-art baselines, VMI-FGSM and VNI-FGSM. Although
ANDA incurs additional memory overhead for the covari-
ance matrix, the total memory usage is still approximately
1.6% lower than that of FIA.

MultiANDA’s implementation involves repeating the
ANDA process multiple times; hence, the time cost is
roughly K times that of a single ANDA, where K is the
number of ensembled ANDAs. However, as the ANDAs
in MultiANDA operate independently, distributed comput-
ing technology can significantly accelerate the process. For
ANDA, all experiments were conducted on a single GPU
(NVIDIA Geforce RTX 2080 Ti), while for MultiANDA,
we utilized K GPUs to enable distributed processing. Fur-
thermore, when the number of samples per batch augmen-
tation is relatively small (n < 36), batch processing can be
applied to expedite our algorithms. For detailed implemen-
tation, please refer to our publicly released code.

‘SIM FIA ANDA VMI VNI

CPU Time (s) 1.366 1.043 1.968 2.629 2.648
GPU Time (s) 1.314 0.982 2.007 2.608 2.624
GPU Memory (GB) |1.390 7.360 7.242 5.080 5.070
Suc. rates (%,IncRes-v2)| 35.3 804 94.0 683 679

Table B.9. CPU Time, GPU Time, GPU Memory(GB) and at-
tacking performance of different methods. The source model and
target model are ResNet-50 and IncRes-v2, respectively.

B.8. Optimization Trajectory

To evaluate the optimization efficacy of ANDA, we ana-
lyzed the optimization trajectories of ANDA, and baseline
methods VMI-FGSM and VNI-FGSM. For enhanced vi-
sualization, we employed Principal Component Analysis
(PCA) [8] and projected the iteratively optimized samples
(including original images and their corresponding adver-
sarial examples of 10 iterations against Inc-v3) along the
top four principal components (v1-v2 and v3-v4). We ran-
domly chose the initial inputs and selected the ones that suc-
ceeded in deceiving the target black-box models. We visu-
alized the iteration paths of these algorithms on the 2D loss
landscape against eight black-box models. The results, as
depicted in Figure B.4, demonstrate that ANDA finds more
efficient optimization paths than VMI/VNI-FGSM, leading
to enhanced optimization outcomes.

C. Ablation Study

In ANDA, we integrate two components, namely data aug-
mentations and the approximation of perturbation distribu-
tion, to enhance the transferability of adversarial examples.
This section examines the individual contributions of these
components to ANDA’s attack performance and the impact
of key hyper-parameters. Note that white-box attack perfor-
mance may reach 100%. Therefore, we focus on black-box
settings to precisely evaluate the efficacy of each compo-
nent. We select seven representative models, including four
normally and three adversarially trained models, as targets.

C.1. Number of Augmentation Batches

To determine the contribution of augmentation to ANDA,
we compared results with and without augmentation,

ie, S includes one sample {xgtd)v} or n samples
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Figure B.2. Perturbation visualization of the examples that fool the
normally trained models

{AUG; (xgtczv) ™, respectively. Figure C.1 (a) illustrates
that batch augmentation significantly boosts performance in
various black-box models. The main reason is that augmen-
tation introduces stochasticity into the iterative optimization
procedure, forming a SGA procedure which help to charac-
terize the asymptotic Gaussian distributions that effectively
enhances the robustness of the results.

Furthermore, we analyzed the impact of varying the aug-
mented batch number n. Considering both the attack perfor-
mance and computational overhead, we adjusted n to rep-
resent the perfect squares of the number of translated pix-
els in one dimension, ranging from 4 to 49 (refer detailed
augmentation implementation in Section C.3). We observe
from Figure C.2 that the overall attack performance gener-
ally improves with an increase in n.

C.2. Effect of Perturbation Distribution

We further examined the impact of the approximated pertur-
bation distribution, specifically the accumulation of histori-
cal gradients along the optimization trajectory. The results,
depicted in both Figure C.1 (b) and Figure C.2, demonstrate
that the attack effectiveness is significantly enhanced by
the statistical analysis of historical gradients. Notably, the
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Perturbed Images
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by VMI-FGSM

Perturbed Images
by ANDA

Perturbation
by ANDA

Perturbed Images {2
by MultiANDA

Perturbation
by MultiANDA

Figure B.3. Perturbation visualization of the examples that fool the
defense models

dashed lines in Figure C.2 are consistently higher than their
corresponding solid lines of the same color, underscoring
the considerable value of incorporating historical gradient
data into the optimization process.

C.3. Magnitude of augmentations

Another important aspect to explore is the extent to which
image translations provide the most benefits. For these
translations, we utilize tx for the horizontal direction and ty
for the vertical direction in the affine transformation, repre-
senting the degree of translation. Consider a scenario where
we have a source image g, and a translated image ;.
We can then formulate the translation process using the fol-
lowing affine transformation in homogeneous representa-
tion. This process involves mapping the ¢, pixel points
from Tgpc 10 Tygs:

x; 1 0 tx x;
yi | =10 1 ty Yi
1 0 0 1 1
——
Ttgt Tsrc

The magnitudes of tx and ty represent the extent of
translations. Specifically, we define two parameters for
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Figure B.4. Visualization of optimization trajectories for generated adversarial examples by ANDA, VMI-FGSM, and VNI-FGSM

this process: n, representing the number of augmentations,
and Augmax, defined as max(abs(tx), abs(ty)). It is im-
portant to note that the valid range for Augmax is [0, 2],
and n takes on values that are perfect squares in our ex-
periments. For example, with n = 25 and Augmax =
0.3, we evenly distribute \/n samples across the interval
(—Augmax, Augmax) for both tx and ty. This results in
a set of tx values, denoted as T, and a set of ty values,

denoted as Ty,. To illustrate, consider T}, as an example:

2Augmax
i1
T, = {tw;|i=0,1,...,v/n—1}

tr; = —Augmax + i X

The process to form T}, follows the same approach as T’
We then calculate the Cartesian product of these two sets to
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Figure C.1. Attack success rates (%) on seven selected models with adversarial examples generated by ANDA on Inc-v3 model
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Figure C.2. Attack success rates (%) on seven selected mod-
els with adversarial examples generated by ANDA on Inc-v3
model with varying the augmented batch number n. Two groups
of ASRs, with or without accumulating previous gradients, are
shown.
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Figure C.3. Attack success rates (%) on the seven models of ad-
versaries generated by ANDA on Inc-v3 model with varying the
value of Augmax.

obtain a series of (tx,ty) pairs, which are used for further
translation operations. The function AUG(x) represents a
set of translated images generated from these operations:
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Figure C.4. Attack success rates (%) on target models with adver-
saries generated by ANDA on VGG-19 model when varying the
value of Augmax from 0.1 to 1.9.

Ty x Ty = {(tx, ty)|te € T, Nty € T}
AUG (x) = {AUG;(z), where ¢ is the index of T, x T} }

As illustrated in Figure C.3, we present the Attack Suc-
cess Rates (ASRs) on various models while varying the
value of Augmax. The results indicate that image trans-
lations within a suitable range can enhance black-box trans-
ferability. However, overly intense transformations lead to
a loss of intrinsic image information, resulting in decreased
attack performance. To illustrate this effect, we extended
the range of Augmax and plotted the attack success rates,
along with specifically translated images at different values
of Augmax, as shown in Figure C.4. It is observed that
moderate translation extents, such as Augmax = 0.3, are
beneficial. Yet, when the value of Augmax exceeds 0.5,
there is a significant drop in attack performance, even on
a white-box model like VGG-19. This suggests that while
appropriate image transformations can promote adversarial
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Figure C.5. Attack success rates (%) of normally trained models (top row) and defense models (bottom row) with samples generated by
MultiANDA. The results are shown across different source models (indicated by *), with a varying number of ANDAs. Each column
corresponds to a specific source model, illustrating the impact of the number of ANDAs on the effectiveness of the attacks.

transferability, excessive alterations can result in the loss of
crucial information.

C.4. Augmentation Types

We also empirically explored the impact of different types
of augmentations. Translation operations yielded effects
similar to random resize and padding, as discussed in
[24, 26]. Although our methods could potentially bene-
fit from stochastic augmentations, this paper focuses solely
on deterministic operations, such as translations, to enable
more stable quantitative analysis. While scale operations,
as in [10], are feasible, their effectiveness is inherently lim-
ited by the nature of the transformation, showing no fur-
ther improvement beyond n > 5 augmentations. Addition-
ally, augmentations like uniform additive noise [12, 20],
Gaussian additive noise[23], and Bernoulli multiplicative
noise[21] resulted in only modest performance enhance-
ments in our experiments.

C.5. Number of Ensemble Models for MultiANDA

We investigated the influence of the number of components
(K) in MultiANDA on performance across our selection
of models, including six black-box normally trained mod-
els and seven defense models. The results, as shown in
Figure C.5, indicate that the performance of MultiANDA
steadily improves with an increasing number of ANDAs.
This is particularly evident with defense models, where
MultiANDA achieves approximately a 10% improvement

in success rates for five of the defense models. These find-
ings further suggest that sampling from a Gaussian mixture
distribution enhances sample diversity, thereby boosting the
transferability of the perturbed samples.
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