
Supplementary Material for
Attack To Defend: Exploiting Adversarial Attacks for Detecting Poisoned Models

This supplementary material contains additional experi-
ments and discussions covering various aspects of the pro-
posed A2D framework.

A. Extension of A2D to White-Box Setting
In some application scenarios (e.g., if the defender is allowed
to download a pre-trained model for local transfer learning),
white-box access to the target model may be available. In this
scenario, the A2D framework can be easily extended in the
following ways. Firstly, the reference model architecture can
be chosen to be the same as the target model. Secondly, since
the target model is known, its SAP value Ŝ(Mθt , ϵ) can be
directly estimated instead of estimating Ŝ∗. Finally, rather
than relying on the SAP value of the target model at any
single value of ϵ, a more robust metric called the Adversarial
Sensitivity Index (ASI) can be defined as follows.

ASI(Mθ) =

∫ 1

0

S(Mθ, ϵ)dϵ. (1)

ASI is a measure of the overall sensitivity of an ML model
to adversarial attacks and is defined as the area under the SAP
curve of the given model. In general, adversarially robust
models are expected to have lower values of ASI compared
to non-robust models. Since the function S(Mθ, ϵ) is not
available in closed-form, the ASI value of a model can be
found using the basic Monte Carlo estimator, i.e., uniformly
sample K random values of ϵ from the range [0, 1] and
compute the empirical average of the corresponding SAP
values. Hence,

ÂSI(Mθ) =
1

K

K∑
ϵi∼U [0,1],i=1

S(Mθ, ϵi). (2)

Since a benign model is likely to be less sensitive to adver-
sarial attacks, it can be expected to have a lower ÂSI value
compared to poisoned models. Hence, the target model can
be categorized as trojan if its ÂSI is much larger than that
of the reference model. If computational complexity is not a
constraint, multiple reference models can be trained and their
ÂSI values can be estimated. The maximum ÂSI value
among these multiple reference models serves as a good

choice of the decision threshold τ . Table 1 shows the accu-
racy (ACC) of poisoned model detection in the white-box
setting with PreActResNet18 as the reference model.

B. Additional Details on Experimental Setup
B.1. Datasets

We use three standard datasets, namely, MNIST [4], CI-
FAR10 [7], and GTSRB (German Traffic Sign Recognition
Benchmark) [15] to evaluate the performance of the pro-
posed method. The MNIST dataset contains 70,000 28× 28
images of 10 handwritten digits, with 60,000 samples used
for training and 10,000 samples for testing. The CIFAR10
dataset consists of 60,000 32 × 32 RGB images from 10
classes, with 50,000 images for training and 10,000 images
for testing. GTSRB is a dataset of traffic sign images con-
taining around 40,000 images from German roads depicting
43 traffic sign classes, with 26,640 images for training and
12,630 images for testing. To demonstrate effectiveness
on real-world datasets, we also consider a binary classifica-
tion task (Normal vs Tuberculosis) based on a Chest X-ray
dataset [13] consisting of 7,000 chest X-ray images of size
224× 224× 3. To evaluate on to larger datasets we utilize
ImageNet dataset [3].

B.2. Target and Reference Model Training

In Table 2, we report the architecture of the target models
used in our evaluation along with their average clean accu-
racy (ACC) and average attack success rate (ASR). Note
that according to our threat model, the target models are
poisoned by the attacker such that they perform naturally on
clean images and behave maliciously only in the presence
of the trigger. Hence, these target models are expected to
have high clean accuracy as well as a high attack success
rate. Please note that target models based on LC, SIG, and
ISS poisoning attacks are trained using Backdoorbench [18].
The hyperparameters involved in target model training are
summarized in Table 3. Examples of generated poisoned
images included in the Modify and Blend poisoned subset
are shown in Figure 1.
For the three architectures, the reference model is trained for
100 epochs. The optimizer used is SGD, with a learning rate
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Table 1. Detection accuracy in the white-box setting on MNIST, CIFAR10, and GTSRB datasets.

Metric (%)
MNIST CIFAR10 GTSRB

Modify Blend WaNet IAD Modify Blend WaNet IAD LC SIG ISS Modify Blend WaNet IAD LC SIG ISS

ACC (↑) 99 100 100 100 86.4 87.17 99 92 98.5 100 100 99.2 99.4 98.87 89 90 99.3 100

set to 1e− 2. The momentum is set to 0.9, and weight decay
is applied with a value of 5e−4. A learning rate scheduler is
employed to adjust the learning rate during training, reducing
it by a factor of 0.1 at epochs 100, 200, 300, and 400. Since
the reference model is trained on only 2% of the clean data,
it is not expected to have high clean accuracy on test data
but achieves 100% accuracy on its training data.

Table 2. Target Model Clean Accuracy(ACC), Architecture and
Attack Success Rate (ASR).

Dataset
Target Model

Architecture Attack ACC (%) ASR (%)

MNIST 2CONV+2FC Modify 95.4 99.6
Blend 96.5 99.6

3CONV+2FC WaNet 99.7 99.2
IAD 99.7 99.0

CIFAR10 PreActResNet18 Modify 81.4 99.9
Blend 84.7 97.5
WaNet 84.4 98.4
IAD 84.2 97.7
LC 84.5 99.9
SIG 84.4 98.3
ISS 92.9 97.9

GTSRB PreActResNet18 Modify 96.4 100
Blend 99.9 99.7
WaNet 95.8 92.9
IAD 99.2 97.6
LC 97.8 65.5
SIG 98.55 70
ISS 98.0 99.6

B.3. Poisoning Attacks

In this section, we will elaborate on the poisoning attacks
used in our evaluation and their implementation details.
Modify: The attacker selects specific training examples and
alters them by converting some pixels to a trigger pattern,
assigns the intended label, and re-inserts the changed sam-
ples with their corresponding labels into the data set. An
example of this type of attack is BadNets [6]. The trigger
is intended to be unobtrusive and negligible to achieve high
accuracy on clean images. However, during the inference
stage, if a trigger is added to an input image, the model will
produce a predicted class associated with the trigger, without
considering the original content of the image.

Figure 1. Examples of poisoned images generated using Modify
(Left) and Blend (Right) attacks. The top row shows poisoned
images from the MNIST dataset with “5” as the true class label.
The assigned target labels are “2” and “3” for the M and B attacks,
respectively. The middle row shows poisoned images from the
CIFAR10 dataset, where the true label is “frog”. The assigned target
labels are “ship” and “dog” for the M and B attacks, respectively.
The bottom row shows poisoned images from the GTSRB dataset,
where the true label is “speed limit (20km/h)”. The target labels
are “speed limit(80km/h)” and “no vehicles sign” for the M and B
attacks, respectively.

Blend: The process of integrating a specific trigger pattern
into the original input, so that the resulting input would con-
tain the trigger information while still being similar to the
original input. [2]. The trigger pattern is typically the same
size as the input image. The Blended Injection technique in-
volves a process of generating instances of poisoned images
by merging a benign input image with a key pattern using
a specific pattern-injection function. This function has a
hyperparameter α that ranges from 0 to 1 and determines the
blend ratio of the key pattern and the input instance. The key
pattern k can be any image and is typically chosen arbitrarily.
We randomly sample α from range [0.05, 0.2].

WaNet: This method uses image warping techniques, specifi-
cally an elastic warping operation, to embed a trigger pattern



Table 3. Target Model Training Hyperparameters

Dataset Attack
Hyperparameter

Optimizer LR Batch Size Epochs

MNIST Modify, Blend Adam 0.001 100 100
WaNet, IAD SGD 0.01 128 100

CIFAR10, GTSRB Modify, Blend, WaNet, IAD SGD 0.01 128 100

into the training images in such a way that it is difficult
to detect by humans [12]. The creation of poisoned im-
ages through the use of a warping field involves multiple
steps, which can be delineated as follows: start by creating
a random noise image of the same dimensions as the orig-
inal image. Afterward, choose a group of reference points
on both the initial picture and the noisy image. Upsample
the control points to cover the entire image using a bicu-
bic interpolation method. Clip the displacement vector at a
predetermined threshold value to limit the magnitude of the
distortion applied to the original image. Unlike other types
of poisoning attacks, this method requires modification to
the training process of the poisoned model. This method is
stealthy and can evade many existing defenses for poisoning
attacks. We used the same attack settings in the paper with a
warping strength of 0.5 and a grid size of 4.
IAD: This attack uses a trained generator network to create
poisoned triggers. The trigger generator is trained to ensure
that a unique trigger is assigned to each input image, pre-
venting multiple images from sharing the same trigger. The
IA attacks can be challenging to detect as the triggers are
not just a fixed pattern as in other types of poisoning attacks,
but rather a dynamic function of the input. This method also
requires modification to the training process of the poisoned
model. Following the original paper [11], we use the SGD
optimizer for training the poisoned model, and the Adam
optimizer for training the generator with the same learning
rate of 0.01. This rate drops by a factor of 10 after every 100
epochs. The networks are jointly trained until convergence.
The backdoor probability and the cross-trigger probability
are set to 0.1.
LC: This attack poisons the datasets without manipulating
the label of poisoning samples so that the attack is more
stealthy [16]. This approach involves modifying each image
prior to adding the backdoor pattern, with the objective of
making the classification task more difficult for the model
using the original features of the image. This makes the
backdoor pattern a distinguishing feature. We used the Back-
doorbench [18] to train these attack models. Following the
original settings in [16], we used PGD to construct adver-
sarial examples, set the poisoning rate as 10%, and assign a
random target label.
SIG: This backdoor attack involves using a sinusoidal sig-

nal as a trigger to distort images of the target class without
altering their labels, resulting in a backdoor attack that is
consistent with the original labels [1]. The authors suggest
a type of backdoor attack that does not require the target
samples’ labels to be poisoned. Instead, the attacker injects a
backdoor signal v into a specific number of training samples
that fall under the intended class. We used the Backdoor-
bench [18] to train these attack models and the frequency
and the delta of the backdoor signal in our experiments are 6
and 40, respectively.

ISS: The authors in [8] employ a technique where they create
hidden additive noises as triggers. These triggers are gener-
ated by encoding a specific string provided by the attacker
into benign images using an encoder-decoder network. The
process involves using a generative model to convert the
attacker’s string into a small image, which is then seamlessly
incorporated into the original training samples as an invisible
perturbation. During the training phase, models are trained
on the manipulated dataset, allowing the mapping from the
encoded string to the target label to be established. We used
the Backdoorbench [18] to train these attack models.

B.4. Computational Efficiency

Our experiments were carried out on a machine equipped
with 80 CPUs and eight NVIDIA Quadro RTX 4000 GPUs.
While reference model training typically takes less than 3
minutes, adversarial sensitivity evaluation requires around 10
minutes. Thus, the total training time is around 13 minutes,
which is significantly less than the 14 hours required for
MNTD training on the same machine. Adversarial probing
of target models is efficient and takes only a few seconds.
In contrast, though FRE does not involve any training, the
detection step takes around an hour, due to the need for
scanning all the labels in a dataset.

To ensure transparency and fairness in comparing the
methods used for benchmarking, we provide a comprehen-
sive overview of the settings used for training each method
in Table 4.



Table 4. Summary of experimental settings for the methods used in benchmarking.

Method Access to Target Model Clean Data Requirements
Experimental setup
used in our study
for benchmarking

Computational Complexity

MNTD Black-box 2%
1024 benign
1024 Poisoned

∼ 14 hours
models training
+
∼ 150 seconds
to train the classifier

ULP Black-box 100%
500 benign
500 Poisoned

∼ 7 hours
+
∼ 699 seconds
to train the classifier
and learn the ULPs

NC White-box 50% of the testing set
Experimental settings
used in the original paper

CIFAR10: 511 seconds
GTSRB: 1,616 seconds

FeatureRE White-box
1% for CIFAR-10
16% for GTSRB

Experimental settings
used in the original paper

CIFAR10: 768 seconds
GTSRB: 9,372 seconds

Cassandra White-box 100 clean image samples
240 benign
240 poisoned

∼ 4 hours +
∼ 10 minutes
to generate
UAPs for each model

C. Additional Experimental Results

C.1. Impact of Adversarial Attack Type

When FGSM [5] is used (instead of PGD [10]) to generate
adversarial examples, the A2D framework is still able to
detect poisoned models, albeit with a significantly lower
detection accuracy (≈ 10% drop for CIFAR-10 and ≈ 4%
for GTSRB) as shown in Table 5. Since FGSM is a single-
step attack, the adversarial sensitivity evaluation is more
computationally efficient with FGSM. However, if detection
accuracy is critical, stronger attacks such as PGD, which is
the most powerful adversary given first-order information
about the network [10], should be employed.

Table 5. Average detection accuracy (ACC %) based on FGSM.

Metric (%)
CIFAR10 GTSRB

Modify Blend Modify Blend

ACC (↑) 80 77 92 94
TDR (↑) 84 78 86 90
FDR (↓) 24 24 2 2

C.2. Impact of Sample Sizes

We investigate the impact of various sample size parameters
on the A2D method. First, we consider the size of the clean
set used to train the reference model and the number of
samples used for adversarial sensitivity evaluation. We

varied the fraction of the training set used as a clean set 2%
or 5% on CIFAR10 and GTSRB and found that the clean
set size did not have a significant impact on the detection
accuracy and ϵmin values. However, the number of samples
used for the adversarial attack did have some impact on the
detection accuracy. Specifically, a minimum of 100 attack
samples is required to achieve reliable poisoned model de-
tection when the reference model is trained on 2% training
samples. With a 5% fraction, 50 attack samples prove to be
adequate. However, when maintaining the same fraction at
5% and utilizing 200 attack samples, a slight decrease in de-
tection accuracy is observed. We attribute this decline to the
requirement for larger epsilon values for the reference model
in such instances. The estimated perturbation bound and
detection accuracy for the GTSRB and CIFAR10 datasets
on two fractions using variations of the number of samples
are presented in Table 6 in addition to the average detection
accuracy of poisoned models on the seven attacks.

Additionally, we explored the sensitivity of the ϵmin by ad-
justing the margin parameter ω. The purpose was to observe
if stopping when the SAP value is below 1 would signifi-
cantly alter ϵmin and impact detection accuracy. We find that
ϵmin should be taken when the SAP value is above 0.9 as
some attacks will be inseparable from benign models. Table
7 shows the overall accuracy on all attacks with different
values of ϵmin.



Table 6. Estimated perturbation bound for GTSRB and CIFAR10
datasets on two fractions of the clean subset using variations of
the number of attack samples and average detection accuracy with
different numbers of samples.

Dataset Fraction
Number of Samples

50 100 200
ϵmin ACC(%) ϵmin ACC(%) ϵmin ACC(%)

CIFAR10 0.02 0.9 93.3 0.9 95 0.9 94.5
0.05 0.9 91 0.9 94.4 0.9 93.2

GTSRB 0.02 0.3 77.5 0.5 96.9 0.6 98
0.05 0.5 96 0.6 97 0.5 95.3

Table 7. Estimated perturbation bound for GTSRB and CIFAR10
datasets with varying margin parameter ω.

Dataset
ω

0.01 0.1 0.2
ϵmin ACC(%) ϵmin ACC(%) ϵmin ACC(%)

CIFAR10 0.9 94.5 0.5 93.6 0.2 89.6
GTSRB 0.4 96.5 0.2 94 0.006 85.1

C.3. Impact of Trigger Properties

We tested the effect of trigger transparency (visibility) on
the detectability of poisoned models. Specifically, we trained
poisoned models with varying levels of trigger transparency
by modifying the blending ratio of the trigger pattern α from
0.05 to 1. When the blending ratio is small, the trigger
pattern is almost invisible, while when it is large, the trigger
pattern completely replaces the original pixels and becomes
completely visible. We observed that increasing the visibility
of the trigger pattern led to a decrease in the SAP values
of the poisoned models. This suggests that a more visible
trigger resulted in reduced susceptibility of the model to
adversarial attacks. However, it is important to note that
even with decreased SAP values, the poisoned models still
fell within the detectability range. It is worth noting that
the current landscape of poisoning attacks primarily focuses
on concealing the trigger within the input data. The aim is
to make the trigger as inconspicuous as possible, rendering
it difficult to detect visually or through traditional analysis
techniques. We conducted an additional ablation study to
investigate the impact of the spatial size of the trigger on
the detectability of poisoned models. Specifically, we trained
poisoned models using triggers of various sizes, including
2x2, 3x3, 4x4, 5x5, and 10x10 pixels, on both the GTSRB
and CIFAR datasets. We aimed to determine whether the
size of the trigger had any noticeable effect on the resulting
SAP values. We found that the spatial size of the trigger
had no significant impact on the detectability of poisoned
models. Results are shown in Figures 2. Note that when
the trigger transparency (α) is small, the trigger pattern is

almost invisible. In contrast, when α is large, the trigger
pattern completely replaces the original pixels and becomes
completely visible. All the poisoned models were accurately
detected by our proposed method and their SAP value was
larger than the sensitivity bound of the Benign models (with
the same architecture). Moreover, no consistent trend in
the SAP values of the poisoned models was observed as
the trigger transparency increased. Similarly, the trigger
sizes also did not have any impact on the detection accuracy.
These results demonstrate that the proposed approach is
robust against variations in trigger properties.

Figure 2. SAP values on GTSRB and CIFAR10 models poisoned us-
ing different trigger transparency settings used in Blend attack(UP),
and using different trigger size settings used in Blend attack(down).

C.4. Impact of Independent Clean Set

In the main paper, all the experiments were based on the
assumption that the clean set is a small subset (2%) of the
training set. In Table 8, we investigated the performance of
our method by training and attacking the reference model
using a clean set derived from the test partition of the corre-
sponding dataset. Note that these samples can be considered
as independent of the training set, but drawn from the same
distribution. Moreover, these samples were not seen by the
target models during training. This experiment allowed us to
assess the robustness of our method in a more challenging
scenario where no samples from the original training set are
available to the defender. We followed the same settings as
in the previous experiments, using a fraction of 2% of the
test dataset for training the reference model. This model
was then subjected to adversarial attacks. The experiments
yielded close results to those obtained using the training
set. This finding suggests that our approach maintains its
effectiveness and reliability even when the reference model
is trained and attacked with previously unseen data by the
target models.

C.5. Detection Performance on Adversarially
Trained Models

In addition to the main experiment, Table 9 presents evidence
that even when adversarial training is conducted before poi-
soning attacks in separate stages, it does not mitigate the



Table 8. Detection accuracy(ACC%) comparison on GTSRB and
CIFAR10 when training and attacking reference model is performed
using original training data (subset) and data not seen by target
model (independent).

Dataset Data
Attack

M B WaNet IAD LC SIG ISS

CIFAR10 Subset 93 86.6 100 95 95 100 100
Independent 85 82 100 95 95 100 100

GTSRB Subset 96.8 97.4 100 100 95 95.5 100
Independent 93 96 100 100 80 92.5 100

sensitivity of the poisoned models to adversarial attacks. Be-
fore introducing the poisoning attack, these models were
trained using PGD with perturbation bound = 0.0314 for
100 epochs. This observation highlights the persistent vul-
nerability of the models to poisoned attacks despite prior
adversarial training.

Table 9. Detection performance on adversarially trained poisoned
models.

Metric(%)
MNIST CIFAR10 GTSRB

M B M B M B

ACC(↑) 99 98 90 87 93 93
TDR(↑) 98 96 96 90 100 100
FDR(↓) 0 0 16 16 14 14

C.6. Using A2D in conjunction with NC

A2D can be integrated with neural cleanse (NC) to enhance
model purification. A2D alone identifies poisoned models
but doesn’t purify them. However, when combined with
purification methods like NC, it improves efficacy. The sug-
gestion is to replace the anomaly index-based detection step
in NC with A2D. Experiments on CIFAR10 demonstrated
that while NC initially misclassified poisoned models as
benign, A2D correctly identified them. The "cleansing" pro-
cess led to a 10% drop in clean accuracy, but the Attack
Success Rate (ASR) significantly reduced from over 90%
to less than 10%. This highlights the effectiveness of A2D,
particularly when rejecting a model is not a viable option.
Results in 10 illustrate the average clean accuracy and ASR
of 9 poisoned models on the CIFAR10 dataset, employing
PREACTResNet-18, ResNet, and VGG architectures, along
with SIG, LC, and ISS attacks before and after cleansing.

C.7. Scalability of A2D Framework to Large
Datasets and Stealthier Attacks

To evaluate if the proposed approach is scalable to larger
datasets and stealthier hidden attacks, we experiment on 20
target (10 benign + 10 poisoned) models with vision trans-

Table 10. Impact of using A2D-based poisoned model detection in
conjunction with purification methods like NC [17].

Before Cleansing After Cleansing

ACC (%) (↑) ASR (%) (↓) ACC (%) (↑) ASR (%) (↓)

97.09 94.28 85.83 9.6

former (ViT_B_16) architecture trained on ImageNet [3]. A
Blend attack with a random poisoning rate was employed
for generating the poisoned models. Using ResNet18 as
the reference model, all the poisoned ViT models exhibited
SAP (Ŝ∗) values above 0.7, while the benign models had
much lower Ŝ∗ values. Additionally, We evaluated the A2D
method on 8 (4 benign + 4 poisoned) target (ResNet18) mod-
els trained on CIFAR-10 and subjected to the Sleeper Agent
attack[14]. Using PREACTRESNET18 as reference model
architecture, the SAP values for the poisoned models were
greater than 0.7 and those of the benign models were less
than 0.7. This indicates that the proposed approach is scal-
able to larger datasets and models and can detect poisoned
models with Sleeper Agent attack. Furthermore, we have
benchmarked our A2D method against ABS [9]. As shown
in the Table below, the proposed A2D approach has higher
detection accuracy (ACC) under most poisoning attacks.

CIFAR10
Modify Blend WaNet IAD LC SIG ISS

ABS 89 87 62.5 50 50 50 50
A2D 93 86.6 100 95 95 100 100

GTSRB
ABS 90 75 80 50 50 50 50
A2D 96.8 97.4 100 100 95 95.5 100
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