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Supplementary Material

In this Supplementary Material we complement the con-
tent of the main paper. The document is structured as fol-
lows: Sec. A reports comparisons with more baselines and
an additional unimodal experiment; Sec. B contains all im-
plementation details of Sec. 5 of the main paper; in Sec.
C we analyze the pruning efficiency of each algorithm in
terms of runtime and extend the discussions of Sec. 6 of the
main paper; in Sec. D we discuss the limitations as well as
the broader impacts of the proposed setting and method.

A. Additional Experiments
A.1. Additional baselines

Mask Training. Here we compare MULTIFLOW with a pro-
cedure requiring much more compute: Task-Agnostic Mask
Training (TAMT) [43]. In a nutshell, TAMT works by opti-
mizing the pruning masks as trainable parameters during the
pretraining phase with straight-through gradient estimation.
In its default setup, TAMT would require the entire pretrain-
ing dataset Dp and many optimization epochs, thus going
against the principles of the lightweight pruning strategy
proposed in the main paper. To meet the constraints of TA-
VLP and to ensure a fair comparison, for this experiment we
fix the computational budget of TAMT to that of gradient-
based pruning algorithms in our competitor suite, meaning
that we effectively train the pruning masks on ⇠ 5% of the
4M pretraining dataset for 1 epoch.
Layer-wise `2 normalization. Additionally, we exam-
ine a different way to unify global magnitude pruning and
layer-wise calibration other than LAMP, i.e., normalizing
the score tensor of each layer by its Frobenius norm before
global pruning (which is equivalent to layer-wise normal-
ization by the `2 norm of the flattened score tensor). The
scoring criterion before normalization is the weight magni-
tude, as in LAMP. This procedure was shown effective in
the context of CNNs [47], so we aim to shed light on its
performance with large-scale transformers.
Results are reported in Tab. 4 for XVLM at all compression
levels, from which we can observe that TAMT is an effec-
tive procedure for moderated sparsity levels, but becomes
comparable to even a data-free procedure such as LAMP at
extreme compression rates, thus hardly justifying the addi-
tional compute it requires. A final observation is that a sim-
ple layer-wise `2 normalization is not sufficient for accurate
pruning of large-scale VLMs.

A comparison between MULTIFLOW and TAMT for prun-
ing BLIP is in Tab. 5. Consistently with the results of the
main paper, also TAMT fails in pruning BLIP at great sparsi-

ties, so the table only reports 63% and 75% results. “ERR”
indicates that the pruned model did not converge to mean-
ingful results, with an average R@1 ⇠ 0%. In general, the
insights of this experiment do not diverge from the obser-
vations of the main paper, i.e.: ¨ pruning BLIP is more
challenging than pruning XVLM also for TAMT; ≠ MUL-
TIFLOW is more efficient and outperforms TAMT across all
tasks; Æ the gap between MULTIFLOW and TAMT increases
with the sparsity, regardless of the downstream task.

A.2. Pruning Vision-only models

While a core component of MULTIFLOW is the
multimodality-aware injection of layer-wise pruning
ratios, the method may also be applied to unimodal models
with slight changes. Specifically, since no modalities to
disambiguate are present in these scenarios, then the prun-
ing ratios can be directly injected from global magnitude
pruning. For any layer, this entails retaining as many
parameters as one would get by applying global magnitude
pruning, according to the scoring function of MULTIFLOW.
Setup. We test this straightforward variation on a Vision
Transformer [17] pretrained with the DINO method [7], by
comparing it to OMP and TAMT. Once the pruned mod-
els are obtained, we transfer them to 3 downstream datasets
for image classification, namely CIFAR10, CIFAR100, and
Flowers102 [32, 49]. Following Sec. 5 of the main pa-
per, MULTIFLOW and TAMT use ⇠ 5% of the model’s pre-
training set for pruning (i.e., 64k images from ImageNet-
1k [15]). We also test MULTIFLOW under extreme data
scarcity, using only 128 images for pruning, and denote
the results with MF128. All pruned models are trained on
224⇥224 images for 10 epochs with a batch size of b = 32,
and test performance after training is reported. We use
AdamW with � = (0.9, 0.999), and cosine learning rate
decay with a warmup to 1 ⇥ 10�5 during the first 10% of
the training steps.
Results are in Tab. 6 for all sparsity levels. Notably, MULTI-
FLOW outperforms TAMT even with 500x less data and, on
a general note, it outperforms the selected baselines for this
additional experiment. This result suggests that the scoring
function proposed in MULTIFLOW remains sound regardless
of the target model to prune, and we hope this additional in-
sight may be of use for future research on network pruning.

We also observe that MULTIFLOW is robust to data
scarcity: pruning with only 128 images is comparable to
using much more data in most cases. Enlarging the size of
Dg tends to be more useful when the task is “difficult”, i.e.,
it is more useful on CIFAR100 than it is on CIFAR10, or



Method
Image-Text Retrieval Image Captioning

Text R@1 Image R@1 BLEU@4 CIDEr

XVLMCLIP 78.2 60.9 39.0 130.4
`2-NORM 74.5 | 67.9 | 14.8 57.6 | 51.1 | 10.8 37.9 | 35.7 | 18.6 125.7 | 117.6 | 48.0
LAMP 75.3 | 69.4 | 21.4 58.4 | 53.2 | 14.6 37.8 | 36.3 | 20.7 125.7 | 120.1 | 56.9
TAMT 76.8 | 72.2 | 21.6 59.9 | 55.6 | 14.6 37.8 | 36.7 | 20.2 126.2 | 122.1 | 54.1
MULTIFLOW 77.4 | 73.9 | 46.9 60.2 | 56.9 | 34.8 38.5 | 37.4 | 30.8 128.6 | 124.6 | 94.3

Table 4. Additional baselines on XVLM, formatted as 63|75|90 sparsities [%]. We also report LAMP to facilitate comparing with `2-
NORM.

Method
Image-Text Retrieval Image Captioning

Text R@1 Image R@1 BLEU@4 CIDEr

BLIPBASE 80.7 95.1 39.1 131.1
TAMT 75.2 | ERR 57.9 | ERR 37.3 | 34.1 124.0 | 111.5
MULTIFLOW 76.3 | 65.7 59.0 | 49.9 37.7 | 35.7 125.4 | 116.3

Table 5. Comparison between TAMT and MULTIFLOW on BLIP, formatted as 63|75 sparsities [%].

when the sparsity is greater.

B. Implementation Details

Remark. It is not straightforward to test existing VLM
pruning methods [58, 65] in TA-VLP. First, |Dg| << |Dp|,
while [65] entails pretraining a compact VLM on the en-
tire Dp with knowledge distillation from the dense VLM.
Second, both [58] and [65] require task-specific knowledge
since they prune using the actual target downstream datasets
during training, while we design Dg to be explicitly task-
agnostic and prune at pretrained initialization. Finally, [58]
and [65] target structured pruning, while our benchmarking
on TA-VLP is focused on unstructured pruning, since the
latter category generally leads to better performance (see,
e.g., [11]). Thus, to avoid unfair comparisons, we acknowl-
edge but do not compare with [58, 65].

B.1. Experimental methodology
In this section, we provide additional details on our pruning,
training and evaluation methodologies.
Usage of calibration data. For one-shot, data-driven meth-
ods (i.e., SNIP and MULTIFLOW) we use the B = 3000
batches from Dg . For CHITA, execution is bound by hard-
ware availability since it requires keeping an FP32 matrix
of size B ⇥ |⇥| into volatile memory. As a consequence,
only for this algorithm, we use B = 500 batches from both
datasets, accounting for a total of ⇠ 368GB and ⇠ 453GB
of RAM usage to store such a matrix for XVLM and BLIP,
respectively1. For all iterative methods (i.e., ITERSNIP and

1We experiment on compute nodes with ⇠490GB RAM, and exceeding

CHITA++), we follow the experimental setup of [52] and
fix the computational budget of their one-shot counterparts.
Thus, we use T = 60 pruning iterations and Bt = 50
batches per iteration, such that T ⇥Bt = 60⇥50 = 3000 =
B. Both algorithms use an exponential sparsity schedule, as
suggested by the corresponding authors [4, 52].
Peculiarities when pruning. BLIP [39] is composed of
(i) a vision-encoder and (ii) a mixture of encoder-decoder
transformers (MED) for text encoding and text decoding.
The text-encoder and decoder of the MED share all the
weights except for the self-attentions. In our work, we fol-
low this design choice and require that these properties are
preserved by the pruned models. As a consequence, we
share the pruning masks according to the MED, i.e., shared
weights also share the pruning masks. In contrast, XVLM
[71] comprises a vision-encoder, a text-encoder and a fu-
sion encoder on top. No weights are tied, so no modules
share their respective pruning masks.
Extracting gradient information from Dg . Among the
algorithms benchmarked in Sec. 5, SNIP, ITERSNIP, CHITA
and CHITA++ require gradient information. However, us-
ing a task-specific loss function to compute gradients is
not possible in TA-VLP. Therefore, for all the aforemen-
tioned algorithms, we use the general purpose objective en-
coded by the pretraining loss of each model (Lp). For BLIP,
Lp = LITC + LITM + LLM, where (i) LITC is the image-text
contrastive loss introduced by [53]; (ii) LITM is the image-
text matching loss, computed with binary cross-entropy be-
tween the outputs of the matching head and the groundtruth
given by in-batch hard negative mining and (iii) LLM is the

the limit of B = 500 batches can lead to OOM errors with BLIP.



Method Cifar10 Cifar100 Flowers102

DINOB/16 99.1 91.7 98.8
OMP 98.0 | 94.7 | 58.1 83.5 | 66.7 | 23.9 92.9 | 78.0 | 22.3
TAMT 97.8 | 95.8 | 57.9 77.2 | 69.2 | 22.8 92.3 | 84.4 | 21.8
MULTIFLOW|Dg | = 128 98.1 | 96.4 | 66.4 84.9 | 74.0 | 28.7 96.3 | 87.1 | 30.4
MULTIFLOW 98.1 | 96.3 | 67.4 85.6 | 74.6 | 29.2 96.2 | 87.5 | 30.5

Table 6. Image Classification with pruned DINO models. Formatted as 63|75|90 sparsities [%].

Method
Runtime [s]

BLIP XVLM

SNIP 2770.61 (⇥2.82) 1847.04 (⇥2.67)
ITERSNIP 2963.97 (⇥3.02) 1966.03 (⇥2.85)
CHITA 8351.92 (⇥8.51) 3879.94 (⇥5.62)
CHITA++ 40538.03 (⇥41.30) 28368.73 (⇥41.08)
MULTIFLOW 981.45 690.64

Table 7. Mean runtime [s] of data-driven pruning algorithms, com-
puted over the sparsity levels of Secs. 5 and 6 of the main paper.
In brackets the speedup of MULTIFLOW.

language modeling loss, computed with the outputs of the
image-grounded text decoder of the MED. For XVLM, we
use Lp = LITC +LITM +LMLM, where LMLM is the masked
language modeling loss on the outputs of the fusion en-
coder. For additional details, please refer to the original
papers [39, 71].
Tuning CHITA and CHITA++ hyperparameters. Both
CHITA and CHITA++ rely on a ridge penalty, denoted by
�, to penalize deviations from dense weights. In line with
the authors of these methods, we find both algorithms to be
very sensitive to this hyperparameter. Hence, to ensure a
fair comparison we run a grid search on � using ITR as a
proxy task. Specifically, we train all pruned models at 63%
sparsity with � ranging from 10�5 to 103 for one epoch,
then pick the best value for the benchmark of the main pa-
per. We report full results of this tuning in Tab. 10.
Downstream task fine-tuning. We train all the pruned
models with 4 NVIDIA A100 GPUs and mixed-precision,
then average the results over three different runs. All fine-
tuning configurations are reported in Tab. 11, for each task.
We also re-execute all the dense baselines under the same
setup, to ensure that hardware differences do not play any
role when measuring the performance drops after pruning.

C. Additional analyses
C.1. Pruning efficiency.
We report in Tab. 7 the total runtime (s) of all data-driven
methods (data-free methods can be executed in negligible
time by most modern hardware). When pruning, we fix
hardware requirements to only one NVIDIA A100 GPU for

Edge Nodes Sparsity Text R@1 Image R@1

X 7
63%

76.97±0.32 59.51±0.12
7 X 56.76±0.49 41.91±0.13
X X 77.35±0.51 60.21±0.16

X 7
75%

72.34±0.37 55.73±0.08
7 X 39.63±0.52 28.49±0.10
X X 73.87±0.13 56.94±0.10

X 7
90%

14.37±0.53 10.59±0.17
7 X 10.47±0.26 7.11±0.14
X X 46.87±0.11 34.77±0.10

Table 8. Ablation of each component of the score (XVLM), com-
puted considering only edges, only nodes, or both (as in the origi-
nal MULTIFLOW algorithm).

all algorithms, and use the FP32 data type. As the table
shows, MULTIFLOW is much faster than data-driven meth-
ods requiring gradient information and/or combinatorial op-
timization, being approximately 3⇥ faster than SNIP (sec-
ond fastest) and 41⇥ faster than CHITA++ (the slowest in
our benchmark).

C.2. On the importance of nodes and edges
In Sec. 4 we introduce MULTIFLOW and its scoring crite-
rion, which incorporates an explicit formulation for neuron-
level importance as well as for the importance of individual
connections. While we demonstrate, in Sec. 6, that invert-
ing the pruning mask in MULTIFLOW leads to even worse
than random performance, thus verifying the soundness of
our scoring function, here we assess the importance of each
component of the score using ITR as a proxy task. We re-
port results in Tab. 8. We observe that using only the impor-
tance of edges (i.e., using the weight magnitude as the scor-
ing criterion), performs better than using only node-level
saliency. Despite this, we also observe that removing ei-
ther component leads to large performance drops, confirm-
ing that both elements are beneficial for pruning.

C.3. Image Captioning with METEOR and SPICE.
For completeness, in Tab. 9 we report the METEOR [3]
and SPICE [2] scores of the experiments shown in Tab.
2 of the main paper. Notably, these metrics confirm the



findings emerged with the BLEU [51] and the CIDEr [64]
scores: i.e., MULTIFLOW outperforms all baselines for all
models at 63% sparsity, and becomes slightly worse than
only CHITA++ when pruning BLIP at 75% sparsity. Impor-
tantly, we observe that algorithms rank differently also with
these metrics when the target VLM changes. For example,
while CHITA++ outperforms LAMP when pruning BLIP, the
latter performs better or comparably when pruning XVLM.

D. Limitations, Discussion and Future Works
Here, we provide final considerations on Task-Agnostic
Vision-Language Pruning and MULTIFLOW.
Structured vs Unstructured sparsity. The entire bench-
marking of the main paper, as well as MULTIFLOW, are
designed and evaluated with unstructured sparsity. While
this particular kind of sparsity already brings advantages
in terms of memory reduction (e.g., via the standard Com-
pressed Sparse Row format) and quantitative performance,
it struggles in bringing actual advantages in terms of
FLOPs/runtime reductions, given the current state of neural
network training and GPU devices. Nevertheless, advances
in a parallel research line focusing on fast sparse operations
have the potential to close this gap in upcoming years. No-
table examples of active research in this direction are sparse
GPU kernels [22] and NVIDIA’s N:M sparsity acceleration.
Moreover, research in unstructured sparsity has proven ben-
eficial as a starting point to design structured pruning algo-
rithms, such as in [48], where the importance of multiple
connections is aggregated to obtain a neuron-level criterion,
or [46], where a similar idea is applied at the attention-head
level in language transformers. Consequently, since MULTI-
FLOW already integrates an explicit formulation of neuron-
level importance, we believe extending it to structured spar-
sity is a promising direction for future research.
Broader impact. In our benchmark, we extensively study
BLIP and XVLM in the context of TA-VLP, since they
represent two significantly different ways to process and
exploit multimodal information from visual and linguistic
sources. We believe our work can pave the way to ex-
plore pruning also Vision-Language systems employing dif-
ferent ways to cope with multimodal sources (e.g., [14] or
[40]), or to explore whether our findings also apply when
other modalities, such as audio, are involved [63]. Finally,
we believe that good algorithms for Task-Agnostic Vision-
Language Pruning can help reduce costs and energy re-
quirements for both pruning and training Vision-Language
systems in upcoming years, and do not see direct risks as-
sociated with our work.



Method Sparsity
BLIP XVLM

METEOR SPICE METEOR SPICE

DENSE 0% 30.63 23.49 30.50 23.41
RANDOM

63%

16.35 9.04 21.35 14.14
SNIP 28.34±0.05 21.47±0.02 29.00±0.12 22.17±0.10
ITERSNIP 22.42±0.04 15.17±0.02 28.58±0.06 21.76±0.05
OMP 29.69±0.01 22.70±0.01 29.76±0.04 22.74±0.04
LAMP 28.82±0.02 21.97±0.01 29.78±0.06 22.79±0.01
CHITA 29.62±0.06 22.61±0.02 29.77±0.05 22.79±0.06
CHITA++ 29.74±0.02 22.74±0.02 29.65±0.07 22.71±0.08
MULTIFLOW 29.75±0.04 22.82±0.07 29.96±0.03 23.07±0.05

RANDOM

75%

14.58 7.19 19.11 11.97
SNIP 25.98±0.11 18.91±0.07 27.02±0.22 20.24 ±0.28
ITERSNIP 14.19±0.06 6.92±0.05 25.51±0.25 18.52±0.27
OMP 27.79±0.01 20.96±0.03 28.52±0.05 21.70±0.03
LAMP 24.26±0.00 17.18±0.01 28.73±0.01 21.76±0.02
CHITA 27.86±0.03 21.03±0.03 28.67±0.19 21.78±0.17
CHITA++ 28.18±0.06 21.38±0.01 28.64±0.04 21.79±0.06
MULTIFLOW 28.12±0.04 21.27±0.02 29.21±0.03 22.40±0.01

Table 9. Image Captioning results with METEOR [3] and SPICE [2] scores. Naming and coloring follow Tab. 2 of the main paper.

Method �
BLIP XVLM

Text R@1 Image R@1 Avg. R@1 Text R@1 Image R@1 Avg. R@1

CHITA

10�5 0.00 0.02 0.01 0.50 0.34 0.42
10�4 0.00 0.02 0.01 0.80 0.71 0.76
10�3 0.02 0.02 0.02 11.48 9.23 10.36
10�2 62.10 47.63 54.87 64.98 50.71 57.85
10�1 66.42 50.85 58.64 72.54 57.45 65.00
100 65.48 50.20 57.84 72.54 57.40 64.97
101 66.44 50.77 58.61 72.78 57.30 65.04
102 65.10 50.42 57.76 72.66 57.23 64.94
103 65.42 50.04 57.73 72.84 57.33 65.09

CHITA++

10�5 0.06 0.02 0.04 0.02 0.02 0.02
10�4 0.00 0.02 0.01 0.00 0.02 0.01
10�3 0.02 0.02 0.02 0.06 0.02 0.04
10�2 0.00 0.02 0.01 61.64 48.44 55.04
10�1 68.18 52.01 60.10 73.80 58.77 66.29
100 67.26 51.85 59.56 72.96 58.22 65.59
101 66.00 50.75 58.38 73.44 57.71 65.58
102 65.64 50.32 57.98 73.12 57.58 65.35
103 66.52 50.87 58.70 72.76 57.33 65.05

Table 10. Hyperparameter Grid Search on � (ridge penalty) for CHITA (top) and CHITA++ (bottom) on both BLIP (left) and XVLM (right).
The ”Avg. R@1” column reports the average between ”Text R@1” and ”Image R@1”, and is used for the final choice of �.

Model Task Batch Size Epochs Optimizer LR WD Scheduler Warmup

BLIP
ITR 128 6 AdamW, � = (0.9, 0.999) 10�5 0.05 cosine 7
IC 256 5 AdamW, � = (0.9, 0.999) 10�5 0.05 cosine 7

VQA 256 10 AdamW, � = (0.9, 0.999) 2 ⇥ 10�5 0.05 cosine 7

XVLM
ITR 128 10 AdamW, � = (0.9, 0.98) 3 ⇥ 10�5 0.01 linear X, 10% steps
IC 256 5 AdamW, � = (0.9, 0.98) 10�5 0.01 linear X, 10% steps

VQA 256 10 AdamW, � = (0.9, 0.98) 5 ⇥ 10�5 0.01 linear X, 10% steps

Table 11. Fine-tuning hyperparameter configurations for different tasks and VLMs.
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