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A. Experimental details
In this section, we provide details on our experimental setup.

Computing CHAIR metrics. We select 5,000 images from the 2014 validation split of MS COCO [10] and, for each image,
prompt the models with one of the following questions: “Describe the image.”, “Give an explanation of the image.”, “Provide
a description of the given image.”. To measure hallucinated objects we follow [20] and complement the set of MS COCO
annotated objects with their synonyms and automatically detect object hallucinations by comparing the objects mentioned in
the captions against the annotated ones.

Computing POPE metrics. We use the official sets of questions introduced in [9], consisting of 3,000 random, 3,000
popular, and 3,000 adversarial questions on images taken from the 2014 validation split of MS COCO [10]. We report
the VQA accuracy using the following template: “Is a hobjecti present in the image?”, where we sample hobjecti randomly
(Random), among the most frequent objects in the dataset (Popular), or among the objects that frequently co-occur with
hobjecti (Adversarial).

Decoding hyper-parameters. To find the optimal hyper-parameters for M3ID, PMI, and Contrastive Decoding we compute
the CHAIR metrics on 500 images sampled from the MS COCO validation set that do not overlap with the 5,000 images
used to measure the CHAIR metrics. For M3ID, we search ↵ in the range {0, 0.01, 0.1, 0.3, 0.5, 0.8, 1.0} and the optimal
fading memory coefficient � in {0.001, 0.005, 0.01, 0.02, 0.03}. For PMI [25], we search ⌧ in {0, 0.01, 0.1, 0.3, 0.5, 0.8, 1.0}
and µ in {0.1, 0.3, 0.5, 0.8, 1.5, 2.0}. For Contrastive Decoding [8], we search ⇠ in {0.1, 0.3, 0.5, 0.8, 1.5, 2.0} and  in
{0, 0.01, 0.1, 0.3, 0.5, 0.8, 1.0}.

DPO hyper-parameters. We use the same set of hyper-parameters as the ones used to fine-tune LLaVA with SFT [13]. In
particular, we train using the AdamW optimizer with batch size 128, learning rate 2 ⇥ 10�5, cosine annealing scheduler,
warm-up ratio 0.03, and DeepSpeed ZeRO-2. We use LoRA with rank 64, scaling factor 16, and dropout 0.05. Following
[19], we set � = 0.1 in the DPO loss.

Hardware. Experiments are run on 8 NVIDIA Tesla A100 GPUs.

B. Context-dependent decodings
In this section, we review precedent context-dependent decoding strategies developed for large language models that we use
as baselines in our experiments and highlight the differences with M3ID.

PMI Decoding. Pointwise Mutual Information (PMI) Decoding [25] is a decoding strategy developed for improving the
grounding of summary generation by increasing the likelihood of generating tokens that are related to the text to be summa-
rized. Specifically, PMI optimizes for the mutual information of the source text and target token when the model exhibits
uncertainty – quantified with the Shannon entropy of the output distribution. Let p denote an LLM, x a prompt and c the
source text to be summarized, PMI selects tokens as follows,

yt = argmax
y2V

log p(y|y<t,x, c)� µ [H(p(·|y<t,x, c)) � ⌧ ] log p(y|y<t,x)

where H(p(·|y<t,x, c)) = �
P

y2V p(y|y<t,x, c) log p(y|y<t,x, c) denotes the Shannon entropy. In the multi-modal case,
we replace the text to be summarized with the input image. Notice that, differently from our method, in the PMI intervention
the weight µ assigned to the realization of marginally likely continuations is constant across time.

Contrastive Decoding. Contrastive Decoding [7, 8] has been developed to foster generations of an expert LLM pexp to
contain plausible and fluent text with the textual input prompt by amplifying its prediction difference with respect to a
weaker amateur model pama. Firstly, Contrastive Decoding applies a plausibility constraint in order to mask tokens to which
the expert model assigns low probability, i.e.,

Vplausible =

⇢
v 2 V, (log pexp)v � log +max

k2V
(log pexp)k

�
.



Secondly, Contrastive Decoding applies a penalty to the amateur logits,

yt = arg max
y2Vplausible

(1 + ⇠) log pexp(y|y<t)� ⇠ log pama(y|y<t).

In the multi-modal case, we set the expert model as the VLM, i.e., pexp(·) = p(·|x, c) and the amateur model as the uncon-
ditioned model, i.e., pama(·) = p(·|x). Notice that, also in this case, the penalization is time-independent.

Multi-Modal Mutual-Information Decoding (M3ID). Our decoding algorithm M3ID optimizes the vision-language
grounding of VLM generations by maximizing the mutual information between the generated textual tokens y and the
provided visual context c. Specifically, when the contextual pressure is low (see Sec. 4), M3ID applies a penalty to the log
probabilities unconditioned on the image, i.e., it penalizes the language-only prior of the VLM. In contrast with the previous
strategies and motivated by our fading-memory modeling assumption, in M3ID the strength of this penalization increases as
more tokens are generated and it is controlled by the time-dependent parameter �t. Let p denote the VLM and x a textual
prompt, M3ID selects new tokens as follows,

8
<

:
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
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k
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�
1� �t
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(log p(y|y<t,x, c)� log p(y|y<t,x))

�t = e
��(t+t0),

where the parameter � controls the decay rate of the fading memory and t0 controls the strength of the language-prior
penalization at the beginning of the generation. In all our captioning experiments, we set t0 = 0, whereas when evaluating
on POPE we find that using t0 = 10, approximately equal to the length of the question x which separates the image c and
the beginning of the answer y, improves the results (see also Sec. D.4).

C. Multi-modal Direct Preference Optimization
In this section, we present the theoretical formulation of multi-modal Direct Preference Optimization (DPO) and our algo-
rithm for aligning VLMs on self-generated data.

Theoretical formulation. Given an image context c, let yw and yl be two different continuations to the same prompt x,
with yw preferred over yl (yw < yl) judging based on grounding with respect to c. Consider the common assumption that
the preference is governed by a latent Bradley-Terry preference model [2] with the reward given by r

⇤(c,x,y) and higher
reward corresponding to better vision-language grounding. Thus, the preference distribution can be written as a sigmoid of
the rewards’ difference,

p
⇤(yw < yl|c,x) = � (r⇤(c,x,yw)� r

⇤(c,x,yl)) .

The preference optimization objective is to find the optimal policy p̂
⇤ that maximizes the expected reward of the generated

continuations and minimizes the KL divergence with the reference policy pref , which is the policy at initialization3,

p̂
⇤ = argmax

p
Ep r

⇤(c,x,y)� �DKL(p, pref),

where y ⇠ p( · |c,x). Leveraging an analytical mapping between r
⇤ and p

⇤, Direct Preference Optimization (DPO) [19]
allows to directly optimize the policy on a preference dataset D = {(ci,xi

,yi
w,y

i
l)}i using the loss

LDPO = �E(c,x,yw,yl)⇠D


log �

✓
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� � log
p(yl|c,x)
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◆�
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Optimizing for this loss increases the likelihood of the preferred and better-grounded completions yw and decreases the
likelihood of the poorly-grounded completions yl.

Preference data generation and alignment. Our alignment procedure is as follows.
1. We start from n images {ci}i2[n] and obtain one positive caption yi

w per image prompting a VLM with the task xi =
“Describe this image.” In order to maximize vision-language grounding, we use M3ID to generate the answers.

2. To generate the negative captions {yi
l}i2[n], we use the same set of images and prompt an unconditioned VLM (i.e., the

VLM with masked visual tokens) to complete the first sentences generated for the positive captions. In such a way, the
first sentence is well-grounded in the image content, while the continuations are dictated by the language prior of the VLM
alone and serve as informative negative examples.

3This regularization term is often added to avoid reward hacking.



Figure 5. PDMs with different distances. We report how PDM varies with different choices of the distance function, i.e., PDM-H with
Hellinger (left panel) and PDM-R with Rank (right panel). We compare the generation of a caption with M3ID, standard, and other context-
aware decoding schemes. With both distance functions, M3ID maximizes the separation of the conditioned and unconditioned distribution,
effectively counteracting the language prior even throughout long caption generations.

3. We train the VLM on the self-generated preference dataset D = {(ci,xi
,yi

w,y
i
l)}i with the DPO loss and the hyper-

parameters described in Sec. A.

D. Further results
In this section, we present further results complementing the experiments presented in the main text.

D.1. Prompt dependency measures

Impact of different distance functions. Depending on the choice of the distance function, PDMs highlight different aspects
of the generative distribution. For example, by choosing the Hellinger (PDM-H) distance, we consider the whole genera-
tive distribution over the vocabulary tokens. However, notice that the generative process is mainly determined by its high
probability modes, especially when greedy decoding or low-temperature sampling is used. Hence PDM-H relies on a high
number of irrelevant tokens. To account for this, we complement PDM-H with the following PDM which only depends on
the model’s preference in generating the most likely token:

PDM-R(y, c|x) , rankp(y|x)(argmax rankp(y|x,c)) (5)

where rankp is the ranking of the tokens in the vocabulary according to the distribution p. Note that when PDM-R = 1,
the highest-ranking token with the conditioning image is also the highest-ranking token without the image. So a greedy

Figure 6. How much does the conditioning prompt “surprise” the unconditioned predictor? We report the PDM-H and the PDM-R
for each token in the string “The image shows ...”. Both distances increase on tokens for which visual information is required and decrease
for punctuation, articles, and when sufficient visual information has already been extracted and is present in the caption (e.g., “kitchen” is
already very likely given the text alone).



Table 5. Evaluation of vision-language grounding on the validation set of MS COCO [10]. Captioning results have been obtained by
prompting the model with the task “Describe the image”, and detailed captioning results with the task “Describe the image in detail.”
CHAIRi and CHAIRs [20] denote the percentage of hallucinated objects and captions respectively, with lower values corresponding to
fewer hallucinations. Cover indicates the percentage of annotated objects that are mentioned in the captions.

Captioning Detailed Captioning
CHAIRi # CHAIRs # Cover " CHAIRi # CHAIRs # Cover "

LLaVA7B 8.1 ± 0.5 17.5 ± 0.8 53.3 ± 0.7 10.1 ± 0.3 35.6 ± 0.7 71.1 ± 0.5
LLaVA7B PMI [25] 6.7 ± 0.7 16.2 ± 1.2 51.5 ± 0.6 9.8 ± 0.4 34.0 ± 0.9 70.1 ± 1.1
LLaVA7B Contrastive [8] 6.3 ± 0.1 14.8 ± 0.1 55.2 ± 0.1 10.1 ± 0.1 33.7 ± 0.3 69.9 ± 0.1
LLaVA7B M3ID 5.9 ± 0.4 13.8 ± 0.8 55.1 ± 0.4 8.8 ± 0.4 28.8 ± 0.8 67.4 ± 0.7
LLaVA7B M3ID + DPO 5.7 ± 0.4 13.5 ± 0.7 55.8 ± 0.2 8.5 ± 0.6 28.1 ± 0.6 68.9 ± 0.9

LLaVA13B 7.4 ± 0.4 18.5 ± 1.0 55.2 ± 0.4 8.5 ± 0.5 31.8 ± 1.7 67.0 ± 0.7
LLaVA13B PMI [25] 6.5 ± 0.5 16.6 ± 1.3 54.7 ± 0.6 8.6 ± 0.3 28.5 ± 1.5 67.1 ± 0.7
LLaVA13B Contrastive [8] 6.5 ± 0.1 14.5 ± 0.2 54.7 ± 0.1 8.1 ± 0.2 28.7 ± 0.4 68.2 ± 0.2
LLaVA13B M3ID 5.5 ± 0.3 13.2 ± 0.8 54.0 ± 0.4 7.8 ± 0.6 27.5 ± 0.8 68.2 ± 0.6
LLaVA13B M3ID + DPO 5.3 ± 0.2 12.6 ± 0.7 54.2 ± 0.3 7.5 ± 0.4 26.9 ± 0.7 67.7 ± 0.5

generation without the specific conditioning signal would result in the same continuation.
In Fig. 5, we show how the average PDM-H and PDM-R vary during the generation of 5000 captions using LLaVA’s

standard decoding, M3ID, and the context-dependent decoding baselines. PDMs with standard decoding decrease as more
tokens are generated in both cases. In particular, we observe that after approximately 30 tokens have been generated, PDM-R
approaches 1, signaling that, on average, the VLM effectively behaves as an LLM which is unconditioned on the visual
prompt. PMI and Contrastive Decoding are effective in increasing the PDM distance at the beginning of the captions but their
effect becomes negligible near the middle and end of the generation, when more multi-modal hallucinations are observed. In
contrast, M3ID maximizes both PDMs and successfully counteracts the language prior even when generating longer captions.
Notice that PDM-R has a spike near the center of the generated captions signaling that M3ID selects, on average, tokens that
are ranked among the top 15 by the model without conditioning. We attribute this phenomenon to the fact that there exist
several ways to continue the captions after the beginning and before the end of the captions, which are more “constrained”
(e.g., the majority of captions start as “In the image there are ...”).

Decay rate of conditioning dilution. In Fig. 3 and Fig. 5 we report PDMs for the LLaVA model. Note that to reduce the
computational complexity of the hyper-parameter search of our method it is possible to estimate the decay rate � directly
from these plots. In fact, estimating the decay rate from Fig. 3 with linear regression in logarithmic coordinates, leads to
� = 0.016, which is close to the optimal value 0.02 found with cross-validation.

Surprising the unconditioned model. Fig. 6 shows the PDM-H and the PDM-R for each token in the string “The image
shows a man, likely a chef, standing in a kitchen ...”. We color code the bars according to PDM-R, in blue when the
conditioned and unconditioned models share the same prediction and in orange when they differ. Note that both distances
increase on tokens for which visual information is required (e.g. objects and attributes), while they decrease for articles. Also,
note that both models mostly agree even when sufficient visual information has already been extracted and is present in the
caption (e.g., “kitchen” is already very likely given the text alone). On the right of Fig. 6, we show that tokens like “the” and
“a” have high probability according to the VLM and have PDM-R = 1.

D.2. Captioning

Detailed captioning and stochasticity due to sampling. Tab. 5 presents the CHAIR and cover metrics for detailed caption-
ing, where LLaVA is prompted to generate longer captions resulting in an increase of the cover metric from approximately
55% to about 70%. In this scenario, although all methods exhibit larger CHAIR values compared to standard captioning
tasks, M3ID and M3ID+DPO achieve the best results in minimizing object hallucinations, substantiating the effectiveness
of our approaches. Additionally, this table includes the standard deviations resulting from stochastic sampling, which we
omitted in the main text for the sake of clarity.

Introduced errors. To further illustrate the effectiveness of M3ID in reducing hallucinations, in Tab. 6 we reconsider the



Table 6. M3ID introduced error metrics. Frequency at which M3ID either modifies or maintains the hallucinations that LLaVA produces
in the task of captioning MS COCO images [10] (same setting as in Tab. 1).

LLaVA correct correct incorrect incorrect
M3ID correct incorrect correct incorrect

LLaVA7B 72.0 % 3.0 % 16.2 % 9.8 %
LLaVA13B 74.2 % 2.4 % 18 % 5.4 %

Table 7. Examples of overcompensation. Maximally surprising the VLM might lead to “overcompensation”, a phenomenon affecting
decoding interventions that amplify the logits difference between the conditioned and unconditioned models like M3ID. When M3ID’s
hyper-parameters force a strong correction over the language prior, the resulting captions tend to overlook elements that are inherently
predictable by the language prior based on the text tokens alone, e.g., the man in the left picture and the van in the right picture.

Input Image

Input Instruction Describe the image.

LLaVA7B The image shows a man walking a dog on a
leash, with the dog wearing a raincoat. They
are walking down a sidewalk, and the man is
holding an umbrella to protect himself from the
rain.

The image shows a blue van parked on the side
of a street, with a fire hydrant nearby. The van
is parked on the side of the road, and there is a
fire hydrant located close to it.

LLaVA7B overcom-
pensation

The image features a dog on a leash, walking
down a paved road or pathway. [No man is men-
tioned]

The image features a city street with a sidewalk,
a fire hydrant, and a pole. There is also a street
sign visible in the scene. [No van is mentioned]

LLaVA7B M3ID The image shows a man walking a dog on a
leash in a city street. The man is holding an
umbrella over the dog to protect it from rain.
They are walking along a dirt road near moun-
tains.

The image features a blue van parked on the
side of a city street next to a fire hydrant and on
the curb.

metrics presented in Tab. 1 before aggregration. Specifically, we detail the proportion of hallucination-free captions generated
by both the base model and M3ID, alongside the proportion of captions that contain hallucinations exclusively in one of the
two cases, and the proportion of captions where hallucinations occur under both models. For the 13B model (respectively
7B model), M3ID corrects hallucinations in 18% (16.2%) of instances, while introducing new hallucinations in only 2.4%
(3.0%) of cases.

Overcompensation. Tab. 7 illustrates instances of “overcompensation”, a phenomenon affecting decoding interventions that
amplify the logits difference between the conditioned and unconditioned models. For example, M3ID, while trying to select
tokens that deviate from the language prior, tends to overlook elements that are inherently predictable by the language prior
alone (see Sec. 5.3). In describing the image of a dog on a leash with a man (left panel in Tab. 7), when M3ID is applied with
an excessively large penalty applied to the language prior, it fails to mention the presence of the man. This oversight occurs
because the “man” token could be inferred from context clues (first tokens in the caption) by the language prior alone without
necessitating any visual information. A similar behavior is observed in the second example (right panel), where M3ID fails



Table 8. Examples of poor language fluency. Using a high threshold value ↵ (↵ = 1 in the examples) disrupts language fluency.
Intensifying the strength of the correction term results in the model initially losing syntactical accuracy and subsequently generating
apparently random tokens, including non-English ones.

Input Image

Input Instruction Describe the image.

LLaVA7B The image shows a hot dog on a bun, accompa-
nied by a cup of soda, sitting on a red table.

The image shows a blue van parked on the side
of a street, with a fire hydrant nearby. The van
is parked on the side of the road, and there is a
fire hydrant located close to it.

LLaVA7B mild
overcompensation

The image features two footlong foot hotdogs
accompanied by napkins on red surface such as
disposable sheets laid over bright stried yards
Kontrola Conference Red pl attached signs. [...]

The image shows vehicles parked on opposite
sides of the street street. Specifically, atten-
tion is focused onungsseiteways van stopped at
an empty firearchivi coming halfViewByIdium
curbALSEwer. [...]

LLaVA7B strong
overcompensation

The image features a footlong hot dog sitting
wrapped in paper on red surface [cyrillic to-
kens] table or bench[ˆ], next to [cyrillic tokens]
genomsnitt queen empty paper.](phia cup com-
pany genomsnitt.) [...]

The image shows a van parked on the side of
a city street next to fire meters and standing
curbs. Street signs Kontrola Bez Praza (”stop
required prohibitively during Kontrola Bez Bez
Praza Activated Here Only Stopton Blue Vanlet
Transport Motor [mixed cyrillic tokens until the
EOS]

LLaVA7B M3ID The image shows a hot dog and a drink sitting
on a red table or counter.

The image features a blue van parked on the
side of a city street next to a fire hydrant and on
the curb.

to mention the presence of the van, despite it being the dominant element in the image.

Preserving language structure. Tab. 8 demonstrates the detrimental effects of using a high threshold value ↵. In such
cases, the indicator function activates more frequently throughout the generation, leading M3ID to consistently prioritize
maximizing the distance from the language prior and thereby disrupting language fluency and structure. Specifically, setting
↵ = 1 and incrementally intensifying the strength of the correction term leads to “overcompensation”. This results in the
model initially losing syntactical accuracy and subsequently generating apparently random tokens, including tokens in non-
English languages, such as Cyrillic.

D.3. InstructBLIP

Our method applies to any VLM, regardless of whether the base LLM has been fine-tuned or not, so long as it is possible to
drop the visual conditioning to compute the language prior. In this section, we apply M3ID to the InstructBLIP model [4]
and evaluate it on the CHAIR benchmark. Compared to the LLaVA architecture, InstructBLIP connects the vision encoder
and the LLM using a Q-Former. As such, differently from LLaVA, to obtain the unconditioned model predictions we mask
the image tokens in the Q-Former. As reported in Tab. 9, also for this architecture, M3ID significantly reduces hallucinations
on CHAIR with respect to standard generation, showcasing its broad applicability.



Table 9. InstructBLIP + M3ID. Evaluation of vision-language grounding on MS COCO (as in Tab. 1) using InstructBLIP and masking
the image tokens in the Q-Former for the unconditioned log probabilities. Captioning results are obtained by prompting the model with the
task “Describe the image.”. CHAIRi and CHAIRs [20] denote the percentage of hallucinated objects and captions respectively, with lower
values corresponding to fewer hallucinations. Cover indicates the percentage of annotated objects that are mentioned in the captions.

CHAIRi # CHAIRs # Cover "
Instruct BLIP 7B 7.9 21.2 59.2
InstructBLIP7B M3ID 6.6 17.6 56.3

InstructBLIP13B 7.3 18.6 54.1
InstructBLIP13B M3ID 6.4 14.0 53.6

Table 10. Conditioning dilution in VQA. Evaluation on the POPE VQA hallucination benchmark [9] (as in Tab. 2) using templates of
different lengths: short prompts the models with “Is a hobjecti present in the image?”, long in addition specifies the format of the answer
and details on the evaluation. Acc. denotes the binary classification accuracy. Longer prompts result in higher errors due to the conditioning
dilution phenomenon, which M3ID effectively reduces by introducing an offset t0 that takes into account the length of the template.

POPE All
Short prompt template (t0 = 10) " Long prompt template (t0 = 50) "

LLaVA 7B 64.9 55.6
LLaVA7B M3ID 70.3 65.7
LLaVA13B 63.8 57.9
LLaVA13B M3ID 77.5 69.8

D.4. Conditioning dilution in VQA
As outlined in the main body of the text, VQA binary classification tasks, such as POPE, do not require the generation
of multiple tokens. Nonetheless, the distance between the “yes/no” response and the image tokens is influenced by the
specific input template chosen to prime the model for VQA. In our experiments, we employ the format [Img][Model
Prompt][Question], where the prompt can be an empty string or any specific instruction such as: “Answer the following
question using the image content. Respond with yes or no.”. Consequently, the length of both the prompt and the question
adversely affects the visual prompt dependency measure. Indeed, as demonstrated in Tab. 10, the dilution effect can manifest
even in binary VQA tasks using prompts of different lengths. In particular, the longer system prompt is obtained by adding
“neutral” sentences like: “You must answer with either Yes or No. You will be evaluated with Accuracy, Precision, and
Recall as the evaluation metrics.”.

To mitigate this issue, when using M3ID on POPE, we introduce an offset t0, i.e., �t = e
��(t�t0), corresponding to the

number of tokens in-between the output token and the image tokens. Our findings in Tab. 10 indicate that incorporating this
offset allows M3ID to significantly improve performance as the output token gets pushed far from the image content.
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