
A. Extended Technical Specification
In this part, we provide some extended technical details

of the proposed methods.

A.1. Specification on T2V Latent Diffusion Model

First, we can formalize the T2V task as generating an
video X={x1, · · · , xF } ∈ RF×H×W×C given the input
prompt text Y ={w1, · · · , wS}. Here F,H,W,C are the
frame length, height, width and channel number of the
video respectively. We use the existing latent diffusion
model (LDM) to accomplish the task. As shown in Fig-
ure 2, LDM consists of a diffusion (forward) process and
a denoising (reverse) process in the video latent space. An
encoder E maps the video frames into the lower-dimension
latent space, i.e., Z0 = {E(X)}, and later a decoder D re-
maps the latent variable to the video, X = {D(Z0)}.

Diffusion Process. The diffusion process transforms the
input video into noise. Given the compressed latent code
Z0, LDM gradually corrupts it into a pure Gaussian noise
over T steps by increasingly adding noisy, i.e., Markov
chain. The noised latent variable at step t ∼ [1, T] can be
written as:

Zt =
√
α̂tx+

√
1− α̂tϵt , (8)

with

α̂t =

t∑
k=1

αt , ϵt ∼ N (0, I) , (9)

where αt ∈ (0, 1) is a corresponding diffusion coefficiency.
The diffusion process can be simplified as: q(Z1:T |Z0) =∏T

t=1 q(Zt|Zt−1).

Denoising Process. The denoising process then restores
the noise into the video reversely. The learned reverse pro-
cess pθ(Z0:T) = p(ZT)

∏T
t=1 pθ(Zt−1|Zt, Y) gradually

reduces the noise towards the data distribution conditioned
on the text Y . Our T2V LDM is trained on video-text pairs
(X,Y) to gradually estimate the noise ϵ added to the latent
code given a noisy latent Zt, timestep t, and conditioning
text Y :

LLDM = EZ∼E(X),Y,ϵ,t

[
||ϵ− ϵθ(Zt, t, C(Y))||2

]
, (10)

where C(Y) denotes a text encoder that models the condi-
tional text, and the denoising network εθ(·) is often imple-
mented via a 3D-UNet.

The original 3D-UNet [23] has a spatial-temporal fea-
ture modeling. The practical implementation is to use a 3D
convolution along the spatial dimension, and followed by
a temporal attention. Specifically, given a set of F video
frames, we apply a shared 3D convolution for all the frames
to extract the spatial features. After that, we assign a set of
distribution adjustment parameters to adjust the mean and

variance for the intermediate features of every single frame
via:

Zi
t = W iConv3D(Zi

t) + bi , (11)

where the convolutions are performed over 3D patches Zi
t .

Then, with a set of given video frame features, Zt ∈
RF×H×W×C , we apply the temporal attention to the spa-
tial location across different frames to model their dy-
namics. Specifically, we first reshape Zt into shape of
HW × #Heads × F × C

#Heads . We then obtain their
query Qt, key Kt, and value Vt embeddings used in the
self-attention via three linear transformations. We calculate
the temporal attention matrix Ht via:

Ht = Softmax(
Qt ·Kt√

d
) ·M , (12)

where M is an lower triangular matric with Mi,j = 0 if
i > j else 1. With the implementation of the mask, the
present token is only affected by the previous tokens and
independent from the future tokens since the frames are ar-
ranged based on their temporal sequence.

A.2. Specification on Dynamic Scene Graph Repre-
sentation

DSG [26] is a list of single visual SG [27] of each video
frame, organized in time-sequential order. We can denote an
DSG as G={G1, · · · , GM}, with each single SG (Gm) cor-
responding to the frame (xm). An SG contains three types
of nodes, i.e., object, attribute, and relation, in which some
scene objects are connected in certain relations, forming the
spatially semantic triplets ‘subject-predicate-object’. Also,
objects are directly linked with the attribute nodes as the
modifiers. Figure 10 illustrates the visual SG.

Since a video comes with inherent continuity of ac-
tions, the SG structure in DSG is always temporal-
consistent across frames. This characterizes DSGs with
spatial&temporal modeling. Figure 11 visualizes a DSG of
a video.

A.3. Prompting ChatGPT with In-context Learning

In §4.1 we introduce the Dysen module for action plan-
ning, event-to-DSG conversion, and scene enrichment, dur-
ing which we use the in-context learning (ICL) to elicit
knowledge from ChatGPT. Here we elaborate further on the
specific designs, including 1) the ICL for action planning,
and 2) two ICLs for scene enrichment, containing the step-
wise scene imagination and global scene polishment.

For each task, we write the prompts, including 1) a
job description (Instruction), 2) a few input-output in-
context examples (Demonstration), and 3) the desired
testing instance (Test). By feeding the ICL prompts into
ChatGPT, we expect to obtain the desired outputs in the
demonstrated format. Note that we pre-explored many other
different job instruction prompts, and the current (shown in

orange

jeans

goggles treesaw

orange

man

woods

blackgloves

orangehelmet

green

black

brown

wear

wear
hold

wear

cut

in

on

SG Parsing
Object Node

Relation Node

Attribute Node

Figure 10. Illustration of a visual SG.

… …

orange

jeans

goggles treejigsaw

orange

man

woods

blackgloves

orangehelmet

green

black brown

wear

wear
pull

wear

cutting

in

on

orange

jeans

jigsaw

white

man

woods green

pulling

wear

on

… …

tree

brown

cutting

DSG

Video

orange

jeans

goggles treejigsaw

orange

man

woods

blackgloves

orangehelmet

green

black

brown

wear

wear
swing

wear

cut

in

on

Figure 11. DSG is a list of single visual SG in the temporal order.

this paper) version of instructions helps best elicit task out-
puts. Also, for each ICL, we select five examples as demon-
strations, which can be enough to prompt the ChatGPT.

ICL Design for Action Planning. In Figure 12 we show
the complete ICL illustration for action planning. Note that
the demonstration examples should come with the ‘gold’
annotations, so as to correctly guide the ChatGPT to induce
high-quality output. In our implementation, for the action
planning, we first obtain the majorly-occurred events (i.e.,
actions) from the input texts via ChatGPT. Note that this can
be a very easy task within the natural language processing
area, and we simply treat this as the gold annotations. Then,
we use an off-the-shelf best-performing video moment lo-
calization model [89] to parse the video starting and ending
positions for each event expression. Via this, we obtain the

action planning annotations for the demonstrations.

ICL Design for Step-wise Scene Imagination. In Fig-
ure 13 we show the full illustration of the ICL for step-
wise scene imagination. We note that the output triplets af-
ter imagination are the full-scale triplets, including the raw
ones of the unenriched SG. This means, we will overwrite
the raw SG with the output triplets, which cover both the
add and change operations.

ICL Design for Global Scene Polishment. In Figure 14
we show the full illustration of the ICL for global scene
polishment. Same to the ICL for step-wise scene imagina-
tion, we also take the output DSG as the refined DSG. The
‘gold’ annotations for demonstrations of the scene imagina-

R
e
qu

e
st

I
nd

uc
eInput: woman putting bottle of water in bag, taking fitness mat and get out office.

Output:
 (woman, putting, bottle of water, (0v, 1v)),
 (woman, taking, fitness mat, (1v, 2v)),
 (woman, get out, office, (2v, 3v)).

Now you are an action planner, you will extract event triplets from a text, each triplet
in a format “(agent, event-predicate, target, (start-time, end-time))”. “agent” is the
action performer, “target” is the action recipient, and “event-predicate” is the main
action. “start-time” and “end-time” indicate the possible event occurrence order and
duration with the basic time interval v.

Input: a lady sitting on the chair and drinking coffee, meeting a friend, greeting
them, and then looking out window.

Demonstration

Instructions

Test

Action Schedules

(lady, sitting on, chair, (0v, 5v)),
(lady, drinking, coffee, (1v, 2v)),
(lady, meeting, friend, (3v, 4v)),
(lady, greeting, friend, (3v, 4v)),
(lady, looking out, window, (3v, 5v)C

h
at

G
P
T

Example-1

Example-2

Example-5

…

…

…

Output:

Figure 12. Illustration of the ICL for action planning.

R
e
qu

e
st

I
nd

uc
e

Input:
 Sentence: woman putting bottle of water in bag, taking fitness mat and get out office.
 Enriched last SG: (woman, holding, water), (woman, in, room), (woman, wearing,
scarf), (woman, holding, bag), (water, in, bottle), (bag, cloth).
 Current SG to enrich: (woman, taking, fitness mat).
 Following SG: (woman, get out of, office).
Output:
 (woman, in, room), (woman, wearing, scarf), (lady, hanging, bag), (bag, cloth),
(woman, holding, fitness mat), (fitness mat, in, green)

Now use your imagination, and add the scene structures of the given scene graph (SG)
with more possible details. Enrich it while carefully considering the raw sentence, and
the contexts of previous, current and Future SGs.

Input:
 Sentence: a lady sitting on the chair and drinking coffee, meeting a friend, greeting
them, and then looking out window.
 Enriched last SG: (lady, sitting on, chair), (lady, in, suit), (lady, wearing, glasses),
(lady, in, office), (chair, white), (chair, leather).
 Current SG to enrich: (lady, sitting on, chair), (lady, drinking, coffee).
 Following SG: (lady, sitting on, chair).

Demonstration

Instructions

Test

Imagined Triplets

C
h
at

G
P
T

Example-1

Example-5

…
…

(lady, sitting on, chair),
(lady, in, suit),
(lady, in, glasses),
(lady, in, office),
(chair, white),
(chair, leather),
(lady, drinking, coffee),
(coffee, in, cup),
(cup, yellow).

Output:

Figure 13. Illustration of the ICL for step-wise scene imagination.

tion are constructed by parsing the video via external DSG
parser [26]. We employ the FasterRCNN [50] as an ob-
ject detector to obtain all the object nodes, and use MO-
TIFS [59] as a relation classifier to obtain the relation la-
bels (nodes) as well as the relational edges. We then use
an attribute classifier to obtain attribute nodes. We filter the
object, attribute, and relation annotations by keeping those
that appear more than 500 times in the training set. This
helps screen the less-informative noises.

B. Experiment Specification

In this part we extend the description of the experimental
settings.

B.1. Evaluation

In our experiments, we used the following three types of
evaluation metrics.

Automatic Metrics. Following previous work [2, 5, 18],
we use the Inception Score (IS) and Fréchet Video Distance
(FVD) for UCF-101, and Fréchet Image Distance (FID) and
CLIP similarity (CLIPSIM) for MSR-VTT.

• IS [54] evaluates the distribution of the frame images
of our generated videos.3 Following previous work on
video synthesis, we used a C3D [63] model trained on
UCF-101 to calculate a video version of the inception

3https://torchmetrics.readthedocs.io/en/stable/
image/inception_score.html

https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html
https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html

R
e
qu

e
st

I
nd

uc
e

Input:
 Sentence: woman putting bottle of water in bag, taking fitness mat and get out office.
 1st SG: (woman, in, room), (woman, wearing, scarf), (woman, holding, water), (water, in,
bottle), (bag, cloth).
 2nd SG: (woman, in, room), (woman, wearing, scarf), (woman, hanging, bag), (bag, cloth),
(woman, holding, fitness mat), (fitness mat, in, green).
 3rd SG: (woman, wearing, scarf), (woman, hanging, bag), (bag, cloth), (woman, holding,
fitness mat), (fitness mat, in, green), (woman, get out of, office).
 …
Output:
 1st SG: (woman, in, room), (woman, wearing, scarf), (woman, holding, bag), (bottle, in,
bag), (water, in, bottle), (bag, cloth).
 2nd SG: (woman, in, room), (woman, wearing, scarf), (woman, hanging, bag), (bag, cloth),
(woman, holding, fitness mat), (fitness mat, in, green).
 3rd SG: (woman, wearing, scarf), (woman, hanging, bag), (bag, cloth), (woman, holding,
fitness mat), (fitness mat, in, green), (woman, get out of, office).
 …

Input:
 Sentence: a lady sitting on the chair and drinking coffee, meeting a friend, greeting them,
and then looking out window.
 1st SG: (lady, sitting on, chair), (lady, in, suit), (lady, wearing, glasses), (lady, in, office),
(chair, white), (chair, leather).
 2nd SG: (lady, sitting on, chair), (lady, in, suit), (lady, wearing, glasses), (lady, in, office),
(chair, white), (chair, leather), (lady, drinking, coffee), (coffee, in, cup), (cup, yellow).
 3rd SG: (lady, leaving, chair), (lady, in, suit), (lady, wearing, glasses), (lady, in, office),
(chair, white), (chair, leather).
 …

Demonstration

Instructions

Test

Polished Scene Graphs

C
h
at

G
P
T

Example-1

Example-5

…
…

Output:

Now imagine you are a film director, and polish the given sequentially-ordered scene graphs to
make the dynamic scenes look more reasonable and temporally smooth in the global viewpoint.
You may modify the input scene triplets for each SG and output more reasonable ones.

 1st SG: (lady, sitting on, chair), (lady,
in, suit), (lady, wearing, glasses), (lady,
in, office), (chair, white), (chair,
leather).
 2nd SG: (lady, sitting on, chair), (lady,
in, suit), (lady, wearing, glasses), (lady,
in, office), (chair, white), (chair,
leather), (lady, drinking, coffee), (coffee,
in, cup), (cup, yellow).
 3rd SG: (lady, leaving, chair), (lady,
in, suit), (lady, wearing, glasses), (lady,
in, office), (chair, white), (chair,
leather).
 …

Figure 14. Illustration of the ICL for global scene polishment.

score, which is calculated from 10k samples using the
official code of TGANv2.4

• FVD measures the similarity between real and gener-
ated videos [64]. For the generated videos (16 frames
at 30 FPS), we extract features from a pre-trained I3D
action classification model.5

• FID [20] measures the Fréchet Distance between the
distribution of the frames between synthetic and gold
videos in the feature space of a pre-trained Inception
v3 network. Practically, we employ pytorch-fid6 to cal-
culate the FID score.

• CLIPSIM [19] is also used for the quantitative analy-
sis of the semantic correctness of the text-to-video gen-
eration on MSR-VTT data. We take into account the
reference-free scores via CLIP [48]. In this paper, we
use the officially released code7 to calculate the CLIP
score. We generate 2,990 videos (16 frames at 30 FPS)
by using one random prompt per example. We then av-
erage the CLIPSIM score of the 47,840 frames. We use
the ViT-B/32 [48] model to compute the CLIP score.

4https://github.com/pfnet-research/tgan2
5https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_

torchscript.pt?dl=1
6https://github.com/mseitzer/pytorch-fid
7https://github.com/jmhessel/clipscore

Human Evaluation Criterion. In §5.4 we also adopt the
human evaluation, i.e., user study, for more intuitive assess-
ments of video quality. On the ActivityNet test set, we
compare our model with baseline systems. We randomly
select 50 text-video pairs (videos containing both the gold-
standard ones and the generated ones), and ask ten partici-
pants (native English speakers) who have been trained with
rating guidelines, to rate a generated video. Specifically,
we design a Likert 10-scale metric to measure the target as-
pect: 1-Can’t be worse, 2-Terrible, 3-Poor, 4-Little poor,
5-Average, 6-Better than average, 7-Adequate, 8-Good, 9-
Very good, 10-Excellent. For each result, we take the aver-
age. We mainly measure the quality of videos in terms of
action faithfulness, scene richness and movement fluency,
each of which is defined as:

• Action faithfulness: Do the visual actions played in
the video coincide with the raw instruction of the input
texts? Is there any point missed or incorrectly gener-
ated?

• Scene richness: Are the visual scenes rich? Are there
vivid and enough background or foreground details in
the video frames?

• Movement fluency: Are the video dynamics of ac-
tions fluent? Is the video footage smooth? Are the
behaviors presented in a continuous and seamless man-
ner?

 https://github.com/pfnet-research/tgan2
https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1’
https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1’
https://github.com/mseitzer/pytorch-fid
https://github.com/jmhessel/clipscore

Triplet Recall Rate. In Figure 7 we use the Triplet Recall
(TriRec.) to measure the fine-grained ‘subject-predicate-
object’ structure recall rate between the SGs of input texts
and video frames. Technically, TriRec. measures the per-
centage of the correct relation triplet among all the relation
triplets between two given SGs. Given a set of ground
truth triplets (subject-relation-object), denoted GGT , and
the TriRec. is computed as:

TriRec. =
|GPT ∩GGT |

|GGT |
, (13)

where GPT are the relation triplets of the SG in the gener-
ated video DSG by a visual SG parser.

B.2. Baseline Specification

We mainly compare with the currently strong-
performing T2V systems as our baselines, which are
divided into two groups: non-diffusion-based T2V, and
diffusion-based T2V.

• Non-diffusion-based T2V Methods
– VideoGPT [82] is a two-stage model: it encodes

videos as a sequence of discrete latent vectors us-
ing VQ-VAE and learns the autoregressive model
with these sequences via Transformer.

– TGANv2 [53] is a computation-efficient video
GAN based on designing submodules for a gen-
erator and a discriminator.

– DIGAN [86] is a video GAN which exploits
the concept of implicit neural representations and
computation-efficient discriminators.

– MoCoGAN-HD [61] uses a strong image gen-
erator for high-resolution image synthesis. The
model generates videos by modeling trajectories
in the latent space of the generator.

– TATS [11] is a new VQGAN for videos and
trains an autoregressive model to learn the latent
distribution.

– CogVideo [24] is a large-scale pre-trained text-
to-video generative model based on Transformer
with dual-channel attention.

– InternVid [73] is a video-text representation
learning model based on ViT-L via contrastive
learning.

• Diffusion-based T2V Methods
– VDM [23] extends the image diffusion models

for video generation by integrating a 3D-UNet
architecture based on 3D convolutional layers.

– LVDM [18] is built upon the latent diffusion
models with a hierarchical diffusion process in
the latent space for generating longer videos.

– MakeVideo [55] directly translates the tremen-
dous recent progress in Text-to-Image (T2I)
generation to T2V without training T2V from

scratch.
– MagicVideo [91] is a latent diffusion based T2V

model, which takes 2D convolution + adap-
tor block operation and a directed self-attention
module for the spatial-temopral learning.

– AlignLatent [5] is also a latent diffusion based
T2V model, which leverages the pre-trained im-
age DMs for video generators by inserting tem-
poral layers that learn to align images in a tem-
porally consistent manner.

– ED-T2V [37] is an efficient training framework
for diffusion-based T2V generation, which is
built on a pretrained text-to-image generation
model.

– VideoGen [33] is a cascaded latent diffusion
module conditioned on both the reference image
and the text prompt, for generating latent video
representations, followed by a flow-based tem-
poral upsampling step to improve the temporal
resolution.

– VideoFactory [70] strengthens the interaction
between spatial and temporal perceptions by uti-
lizing a swapped cross-attention mechanism in
3D windows that alternates the ”query” role be-
tween spatial and temporal blocks, enabling mu-
tual reinforcement for each other.

– Latent-VDM: we implement a T2V baseline of
latent video diffusion model based on the latent
diffusion [52], with the widely-adopted spatial
convolution and temporal attention.

– Latent-Shift [2] adds a parameter-free temporal
shift module onto the existing latent video dif-
fusion model to enhance the motion dynamics
learning of video generation.

To enable further customized evaluations and experi-
ments, we also re-implement some open-sourced baselines,
including CogVideo8 [24], VDM9 [23] and Latent-VDM10

[52].

C. Extended Experiments

C.1. Visualization of DSG-guided Controllable
Video Synthesis

In Figure 15 we show the video frames generated by our
Dysen-VDM, along with which we visualize the DSGs in-
duced and enriched by the Dysen module.

8https://github.com/THUDM/CogVideo
9https://github.com/lucidrains/video-diffusion-

pytorch
10https://github.com/nateraw/stable-diffusion-

videos

https://github.com/THUDM/CogVideo
https://github.com/lucidrains/video-diffusion-pytorch
https://github.com/lucidrains/video-diffusion-pytorch
https://github.com/nateraw/stable-diffusion-videos
https://github.com/nateraw/stable-diffusion-videos

Te
xt

 p
ro

m
pt

: A
 w

om
an

 to
ld

 to
 th

e
lit

tle
 b

oy
, a

nd
 th

en
 sh

e
he

lp
ed

 th
e

lit
tle

 b
oy

 c
ro

ss
 tw

o
di

ffe
re

nt
 c

ol
or

 o
f o

bs
ta

cl
es

 o
ne

 b
y

on
e,

 a
nd

 th
e

lit
tle

 b
oy

 p
ic

ke
d

up
 th

e
pi

nk
 b

ox
 o

n
th

e
ta

bl
e.

w
om

an
bo

y
ta

lk
 to

lit
tle

ob
sta

cl
e

in
 fr

on
t o

f

be
si

de

w
om

an
bo

y

as
si

st
lit

tle

ob
sta

cl
e

in
 fr

on
t o

f
be

hi
nd

cr
os

s
bl

ac
k

bl
ac

k

w
om

an
bo

y

as
si

st
lit

tle

ob
sta

cl
e

in
 fr

on
t o

f
be

hi
nd

cr
os

s

gr
ee

n

bo
ylit

tle

ta
bl

e

ne
xt

 to

bl
ue

bo
x

onpi
ck

 u
p

Te
xt

 p
ro

m
pt

: A
 c

at
 is

 sc
re

am
in

g,
 lo

ok
s a

t t
he

 w
in

do
w

, a
nd

 w
an

ts
 to

 ju
m

p
on

 it
, b

ut
 fa

lls
 d

ow
n

th
e

ta
bl

e.

ta
bl

e
ca

t

si
t o

n

w
in

do
w

ne
ar

be
hi

nd

ch
ai

r

ne
xt

 to

sc
re

am
in

g

ta
bl

e
ca

t
si

t o
n

w
in

do
w

ne
ar

be
hi

nd

ch
ai

r
ne

xt
 to

lo
ok

 a
t

ta
bl

e
ca

t

si
t o

n

w
in

do
w

ne
ar

be
hi

nd

ch
ai

r
ne

xt
 to

ju
m

p
on

ta
bl

e
ca

t

fa
ll

do
w

n

w
in

do
w

ne
ar

ch
ai

r
ne

xt
 to

ju
m

p
on

ob
sta

cl
e

bl
ac

k

be
hi

nd

Fi
gu

re
15

.V
is

ua
liz

at
io

n
of

ge
ne

ra
te

d
vi

de
os

w
ith

th
e

in
du

ce
d

an
d

en
ri

ch
ed

D
SG

st
ru

ct
ur

es
.

C.2. Failure Analysis

While Dysen-VDM helps achieve overall improved per-
formance in most of cases, it will err sometimes. Here
we summarize the typical failure cases of Dysen-VDM that
were made during our experiments.

• Type-1: Due to the limitations of LLM, sometimes
it may hallucinate, leading to errors in scene under-
standing. The imagined DSG quality is relatively low,
which, in turn, affects the quality of the generated
video.

• Type-2: DSG is very proficient at generating realis-
tic videos. However, there are some abstract scenes,
such as cartoon-style videos, that cannot be supported
by the structured triplet representations of SG. DSG
struggles to effectively improve specific artistic styles
in certain frames.

But fortunately, in most of the T2V scenarios, Dysen-
VDM can advance. The integration of structured DSG
representations with rich details (from LLMs’ imagination)
empowers the system with highly controllable content gen-
eration and high-quality video dynamics.

	. Extended Technical Specification
	. Specification on T2V Latent Diffusion Model
	. Specification on Dynamic Scene Graph Representation
	. Prompting ChatGPT with In-context Learning

	. Experiment Specification
	. Evaluation
	. Baseline Specification

	. Extended Experiments
	. Visualization of DSG-guided Controllable Video Synthesis
	. Failure Analysis

