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1. Analyses of RepAn
In this section, we further analyze the gradient during train-

ing through the impact of the loss function, and discuss the

limitations of training consumption on ImageNet [1].

1.1. Gradient Analysis: More Details

Let X ∈ R
Cin×H×W and Y ∈ R

Cout×H′×W ′
represent

the input and output feature maps, respectively. The for-

ward propagation through a convolutional layer is formu-

lated as Y = X �W + b, where W ∈ R
Cout×Cin×K×K

and b ∈ R
Cout are the weights and bias terms of the convo-

lution, respectively.

For the expanded branches used in our method, their gra-

dient is calculated as:⎧⎪⎪⎨
⎪⎪⎩
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where C is the other term which is not related to the convo-

lution parameters W and b, and λ is the adjustment scheme

attach rate, as noted in Sec. 3.3 in our paper. Note that

the expanded branches have a larger gradient magnitude at

the beginning of training. We interpret this phenomenon as

inheriting prior knowledge and achieving weights ensem-

ble. The term
∂f(Y )
∂Y in Eq. (1) represents the ratio of the

loss function to the output, which is directly related to the

obtained gradient value of the convolution parameters.

Furthermore, since we use the cross entropy error as the

loss criterion f(Y ), we have:

∂f(Y )

∂yt
= −∂

∑n
t=0 yt log (ŷt)

∂ŷt
= −yt

ŷt
, (2)
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Figure 1. Comparison of gradient values of different depths and

training epochs for expanded and inherited branches.

where ŷ denotes the predicted distribution. Then, the gradi-

ent is calculated as follows:
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By summing Eq. (3), we have:

∂f(Y )

∂X
= Ŷ − Y . (4)
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Figure 2. Comparison of choosing different warm-up epochs for λ. Left: Training for 30 epochs each time step. Right: Training for 40
epochs each time step.

This formula shows that when the output predicted by the

network is close to the real labels, it is less affected by back-

propagation during training. Figure 1 compares the gradient

values during training, and the experimental results verify

this precisely. Specifically, the gradient values of the ex-

tended branches are generally greater than that of the origi-

nal branch that inherits the previous weights. As the original

branch utilizes the lossless compression property of Rep, it

fully preserves the output of the previous stage, being

less modified during training.

From the perspective of the training epoch, it can be

found that the expanded branches have greater gradients in

the early period of training. This is because the network has

just been randomly initialized and thus has a rapid learn-
ing process in the early stages. Considering that this in-

troduces significant oscillations to the training process, we

thus present the parameter λ to reduce the gradient value to

stabilize the training artificially.

From the perspective of network depth, deeper layers

always have greater gradient values. We understand this

process as a feature fusion process of multiple branches.

Therefore, more learning is required in the layers close

to the output, leading to improved gradient values of the

deeper layers.

1.2. Discussion: Training on ImageNet

Our paper mentions that RepAn needs more learning epochs

when applied to larger datasets. Specifically, setting the

number of epochs of each time step to 30 is sufficient for

the CIFAR-10/100 datasets [5], and we run for up to 5 time

steps for better convergence. This process makes the total

number of training epochs even lower than regular training,

achieving a speedup.

However, it is hard to achieve remarkable training cost

savings on large datasets and heavyweight neural networks.

On the one hand, more epochs are required for the signif-

icantly increased amount of training data (e.g., 1.28M for

ImageNet and 60K for CIFAR) on larger datasets. On the

other hand, the number of parameters of the network also

multiplies, resulting in a much slower learning process.

Moreover, the cyclic cosine annealing method requires

multiple training time steps. Annealing methods [4, 6]

achieves better final performance through a larger learning

rate, fewer learning epochs, and multiple times of training

to convergence. Our training paradigm matches this an-

nealing process and thus exhibits similar properties. Us-

ing a larger learning rate and reducing the number of train-

ing epochs may allow for better annealing. Therefore, we

compare the impact of different training epochs in Sec. 2.2,

and find that insufficient training will seriously affect the

convergence at each time step, resulting in further degrada-

tion of performance. Although RepAn can bring remark-

able performance improvements, the training overhead in

large datasets cannot be significantly reduced, which can be

further improved in future work.

2. Additional Ablation Studies
This section introduces some additional ablation experi-

ments mentioned in the original paper, and detailed analyses

of the experimental results.

2.1. Influence of Schedulers for λ

The adjustment scheme attach rate, represented as λ, is

designed to achieve stability in the early stage of training

and reduce the oscillation caused by random initialization

of extra branches. In the later stages of training, the value

of λ should be restored to 1.0 to avoid affecting the actual

process of training. The adjustment of λ is similar to the

warm-up process and allows artificially adjusting its value

at different epochs. A simple linear warm-up scheduler is



designed as:

λ ← max

(
#train epochs + 1

#warmup epochs + 1
, 1.0

)
. (5)

This scheduling process can also be designed as a more

complex function, but a linear approach is sufficient due to

the small training epochs involved. We then compare the

effect of different warm-up epochs using the RepVGG [2]

network on CIFAR-100, as shown in Fig. 2.

When λ is not used, the network converges with a sig-

nificantly larger loss, resulting in poor performance. When

a suitable number of warm-up epochs is set, the network

can obtain better convergence. Using less than half of the

total epochs helps achieve optimal performance. However,

too many warm-up epochs reduce the final performance, but

still perform better than not using λ.

However, this threshold may vary depending on different

datasets and the capacity required by the network. In prac-

tice, we reduced the number of warm-up epochs of heavy-

weight models on ImageNet, leaving more epochs for better

training to convergence.

2.2. Influence of Training Epochs on ImageNet

As mentioned in Sec. 1.2, training on ImageNet requires

more epochs to meet the learning requirements for larger

capacity and more parameters. We compare different train-

ing epochs, aiming to find the minimum cost that satisfies

the training of the annealing algorithm. We use ResNet [3]

for comparison, following the settings in our main experi-

ments but changing the training epochs only.

Figure 3 shows the training curves of different training

epochs. When insufficient training epochs are used, the net-

work cannot be fully trained, resulting in a poor final per-

formance. This figure shows that using 80 training epochs

is enough for a satisfying convergence, but more epochs al-

ways performs slightly better.

Although using fewer single training epochs decreases

the training performance, due to the cyclic cosine annealing

algorithm [6], the network benefits from the multiple con-

vergences to discover a better optima, thus performs bet-

ter [4]. Experimental results in our paper also demonstrate

the effectiveness of this training method.

Figure 3. Comparison of different number of epochs for training

ResNets on ImageNet. Best viewed in color.
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