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In this supplementary material, we provide the imple-
mentation details of VMINer (Sec. 6), the creation details of
synthetic and real-world data (Sec. 7), and more qualitative
and quantitative results (Sec. 8). The supplementary video
(will be published later on the project website) shows addi-
tional qualitative comparison results against prior methods.

6. Implementation Details
6.1. Network Architecture

VMINer has 6 trainable modules: 4 MLPs including Mgeo,
Mmat, Mfar, and Mnear, and 2 multi-resolution hash grid
encoding including encgeo and encmat.

The SDF MLP Mgeo contains 1 hidden layer with 64
neurons with SoftPlus(x) = log(1 + ex) as the activation
function. We apply weight normalization reparameteriza-
tion [12] and initialize it so that its output approximates the
SDF field of a sphere.

The material MLP Mmat, the far-field radiance MLP
Mfar, and the near-field radiance MLP Mnear all share the
same network architecture: the fully-fused MLP from [10]
containing 2 hidden layers with 64 neurons each, using
ReLU [11] as in-network activation functions and sigmoid
as output activation functions.

For the multi-resolutional hash grid encoding encgeo and
encmat, we set the number of levels L = 16, the hash table
size T = 219, the coarsest resolution Nmin = 16, and the
finest resolution Nmax = 2048.

6.2. Training Scheduling

In addition to the above trainable modules, other trainable
parameters include the surface concentration parameter b,
the light embedding F{far,near}i

, the far-field lighting pa-
rameters ξij , λij , and µij , and the near-field lighting pa-
rameters pi (trainable if neari is not collocated with cam-
era) and hi.

The base learning rate of the light embedding
F{far,near}i

and the parameters of encgeo, Mgeo, Mfar, and
Mnear, are set to 10−2. The base learning rate of pa-
rameters of encmat and Mmat is set to 3 · 10−2. The
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base learning rate of lighting parameters ξij , λij , µij ,
pi, hi is set to 2 · 10−2. The base learning rate of b is
set to 10−4. We incorporate a linear warm-up stage at
the start of training, then exponentially decay the learning
rate to 0.1× eventually. The geometry and radiance fields
(Mgeo,Mfar,Mnear, encgeo, b,F{far,near}i

) are frozen dur-
ing the material optimization stage.

6.3. Loss Function Weights

VMINer is trained using 6 loss terms: the direct supervision
losses Lrf and Lpb, the Eikonal loss Leik, the silhouette loss
Lsil, the self-consistency loss Lcon, and the smoothness loss
Lsmo. The loss terms are divided into two groups and are
used separately in two stages: Lstage1 = Lrf + λeikLeik +
λsilLsil+λnsLns and Lstage2 = Lpb+λconLcon+λmsLms.
We typically set λeik = 2 · 10−4, λsil = 10−3, λns = 10−3,
λcon = 0.1, and λms = 10−3.

6.4. BRDF Model

We use a simplified GGX Microfacet BRDF [17] as our
BRDF model when reconstructing the scenes. We presume
the reflection to be isotropic and fix the parameters before-
hand other than the diffuse albedo ∈ [0, 1]3 and the specular
roughness ∈ [0, 1]. As a consequence, the BRDF parame-
ter β predicted by the material MLP belongs to the space
[0, 1]4.

6.5. Tone Mapping

Due to the requirement of physically-based rendering, our
reconstruction pipeline operates in linear color space. Con-
sidering that the gamma-corrected sRGB space is usually
used in the input images and is closer to human perception,
we apply a fixed gamma correction with γ = 2.2 to the out-
put linear radiance prior to visualization or the computation
of losses and error metrics.

6.6. Mesh Extraction

Post-training, we follow a procedure similar to Wild-
Light [3] to process the SDF and BRDF fields into textured
meshes. The zero-level isosurface is extracted using the
marching cubes algorithm [9], simplified [5], and stored as



a triangle mesh. We then use UV unwrapping [8] to gener-
ate UV coordinates for each 3D vertex. We rasterize the 3D
meshes onto the 2D texture atlas that store the 3D positions
on the mesh surfaces for each pixel in the atlas. Normal and
material texture maps are generated by querying the geome-
try and material fields at the specified 3D locations for each
pixel. The resulting textured mesh can be easily integrated
into industry-standard rendering software like Blender [1],
facilitating fast and high-quality rendering suitable for a va-
riety of applications.

7. Data Creation Details
7.1. Synthetic Data

We render the scenes in Blender under 4 different setups
of lighting conditions, as described in Sec. 4.1 in the main
paper. We show two example training images of each scene
in the first column in Tab. 4 of this document.

7.2. Real-world Data

VMINer assumes the tone mapping curves of input images
to be a gamma correction with γ = 2.2, i.e., it assumes lin-
ear images can be obtained by applying an inverse gamma
correction. This assumption is also explicitly or implicitly
made in various inverse rendering methods, including Ten-
soIR [7] and WildLight [3]. Thus, we have to control the
tone mapping curve of the input images. We follow Wild-
Light [3] and use an iPhone 12 Pro as a hand-held cam-
era and the “ProCam” app to take raw images with a linear
camera response. We fix the white balance, focal length,
exposure time, and ISO for all images. For each lighting
combination of far lights and near lights, we keep an ap-
proximately constant distance of 0.5 meters from the object
and move the camera in a spiral pattern around the objects.
We take about 120 images per object, where half of them
are taken with the LED light on the iPhone turned on.

We register the camera poses using COLMAP [15, 16]
with HLoc [13, 14] for feature extraction and matching. On
images lit by different environments, however, image fea-
tures from backgrounds may have no relevance with fea-
tures from other backgrounds for COLMAP to work on. To
perform camera registration in such case, one can follow
NeRD [2] in relying only on the features of the object itself
(if they are rich enough) to guide COLMAP. We instead
stick the object to a board covered with ARTag [4] for a
fallback when COLMAP fails.

After obtaining the captured raw images of the object,
we use a custom image signal processor (ISP) to process the
raw image by, e.g., demosaicking, white balancing, trans-
forming color space, and most importantly, applying a tone
mapping with γ = 2.2 to let the processed images satisfy
our assumption of availability of linear input images. We
crop the images to 1200×1200 and manually mark the fore-

ground region of each image to get RGBA images.

8. More Results
8.1. More Quantitative Comparison

We show quantitative results on each scene in Tab. 4 of this
document. We observe that although our method does not
beat rival methods on some scenes with smooth geometry
and materials (e.g., HANDBAG), it generally outperforms
prior methods with the same input lighting conditions by a
considerable margin.

8.2. More Qualitative Comparison

For the 6 synthetic scenes, we compare our method (one far-
field lighting with flashlight) with prior methods, including
WildLight [3] (one far-field lighting with flashlight), Ten-
soIR [7] (two far-field lighting), and NVDiffRecMC [6]
(one far-field lighting). For the 2 real scenes, GUANYU
and DEBUGUNDAM, we compare our method (one far-
field lighting with flashlight) with prior methods, includ-
ing WildLight [3] (one far-field lighting with flashlight),
TensoIR [7] (one far-field lighting), and NVDiffRecMC [6]
(one far-field lighting). The results under one viewpoint are
shown in Fig. 7, Fig. 8, Fig. 9, and Fig. 10 of this document.

It can be observed that our method typically reconstructs
more detailed and faithful shapes and materials, including
both diffuse albedo and specular reflection parameters. For
example, our method succeeds in reconstructing the com-
plicated shape of LEGO, whereas WildLight [3] fails to re-
cover the geometrical details and TensoIR [7] produces the
wrong surface normal of the continuous tracks of the bull-
dozer. In BARRELSOFA, our method satisfactorily repro-
duces the text and graphics on the cap of the barrel while
WildLight [3] and TensoIR [7] can only produce blurry re-
sults. Our method also reconstructs the spatially-varying
material parameters that can correctly reproduce highlights
with varied sharpness on different parts of the scene (e.g.,
the metal and the leather in BARRELSOFA, the plate and
the hotdog in HOTDOG, the clay and the polished porce-
lain surface in GUANYU, and the rough and smooth PVC
in DEBUGUNDAM).

However, on some scenes with spatially-uniform materi-
als (e.g., HANDBAG and the plate of HOTDOG), our method
do not outperform WildLight [3]. The strong cast shadow
in HANDBAG and inter-reflection in HOTDOG somewhat re-
main in the result of our method. However, it is known that
in reconstruction-based inverse rendering methods (includ-
ing ours), hard cast shadows can undesirably alter the ma-
terial to compensate for imperfect estimation of shading. In
that context, one key characteristic of WildLight [3] is that
its reconstructed radiance is the summation of the neural
radiance from the ambient lighting and the PBR radiance
from the flashlight. This additive ambiguity enables Wild-



Table 4. Quantitative comparison results with state-of-the-art methods on each of the 6 synthetic scenes. Notations of input lighting
conditions: “1F” means single far-field lighting, “1F1N” means single far-field lighting with single near-field lighting, “2F” means two
far-field lighting, and “2F1N” means two far-field lighting with single near-field lighting. On the first column, for each scene we show two
example training images, the upper one under the far-field lighting in “1F” and the lower one under another far-field lighting in “2F”. We
show results of surface normal, diffuse albedo, view synthesis RGB, free-viewpoint (FV) relit RGB, the specular reflection part of FV relit
RGB. We mark the best and the second best results in each column. ↑ (↓) means bigger (smaller) is better.

Scene Method (input lighting)
Normal Albedo View synthesis FV relit FV relit (spec)

MAngE↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

BARRELSOFA (1) TensoIR [7] (1F) 8.469 25.554 0.892 0.183 29.824 0.898 0.224 27.888 0.873 0.226 26.724 0.813 0.218
(2) NVDiffRecMC [6] (1F) 12.141 22.231 0.867 0.140 24.990 0.911 0.125 24.513 0.871 0.148 24.832 0.796 0.203
(3) Ours (1F) 10.751 26.055 0.876 0.142 30.151 0.943 0.112 27.087 0.905 0.140 25.914 0.834 0.188

(4) WildLight [3] (1F1N) 6.905 24.749 0.884 0.171 26.578 0.917 0.128 26.660 0.903 0.135 26.847 0.844 0.160
(5) Ours (1F1N) 6.525 31.683 0.945 0.092 32.321 0.956 0.085 31.186 0.946 0.097 28.972 0.881 0.159

(6) TensoIR [7] (2F) 9.528 25.851 0.892 0.187 28.886 0.892 0.228 28.290 0.877 0.222 26.883 0.822 0.208
(7) Ours (2F) 8.261 26.435 0.876 0.131 29.361 0.941 0.110 27.975 0.920 0.122 27.085 0.852 0.171

(8) Ours (2F1N) 6.701 32.378 0.948 0.085 31.745 0.955 0.082 31.172 0.948 0.090 28.575 0.866 0.156

HANDBAG (1) TensoIR [7] (1F) 18.277 25.258 0.920 0.069 28.652 0.917 0.110 30.220 0.922 0.116 30.098 0.900 0.134
(2) NVDiffRecMC [6] (1F) 12.949 27.473 0.921 0.126 26.993 0.912 0.130 30.037 0.937 0.108 28.537 0.890 0.125
(3) Ours (1F) 6.771 22.460 0.892 0.149 26.348 0.937 0.074 28.529 0.932 0.092 31.134 0.920 0.120

(4) WildLight [3] (1F1N) 5.978 33.687 0.981 0.025 32.338 0.946 0.108 37.125 0.972 0.075 35.255 0.945 0.098
(5) Ours (1F1N) 6.097 31.855 0.950 0.087 33.014 0.946 0.107 35.885 0.967 0.084 32.361 0.931 0.115

(6) TensoIR [7] (2F) 17.261 27.250 0.928 0.068 28.682 0.915 0.104 31.304 0.927 0.112 30.828 0.910 0.128
(7) Ours (2F) 6.482 22.342 0.887 0.152 25.651 0.930 0.086 28.180 0.937 0.090 31.335 0.923 0.118

(8) Ours (2F1N) 6.067 32.760 0.954 0.088 33.259 0.943 0.110 36.795 0.968 0.083 34.329 0.945 0.109

HOTDOG (1) TensoIR [7] (1F) 14.951 23.341 0.933 0.120 26.916 0.874 0.177 24.734 0.879 0.177 23.506 0.799 0.194
(2) NVDiffRecMC [6] (1F) 13.397 23.880 0.944 0.111 21.504 0.869 0.157 20.325 0.874 0.166 23.291 0.794 0.204
(3) Ours (1F) 11.273 19.732 0.857 0.171 23.533 0.913 0.108 22.493 0.891 0.134 22.483 0.818 0.161

(4) WildLight [3] (1F1N) 10.254 24.238 0.952 0.076 29.563 0.936 0.087 30.163 0.939 0.080 20.070 0.794 0.154
(5) Ours (1F1N) 10.072 24.422 0.940 0.112 29.733 0.949 0.080 29.186 0.937 0.090 29.745 0.905 0.123

(6) TensoIR [7] (2F) 11.197 24.103 0.949 0.094 27.544 0.878 0.177 24.912 0.892 0.167 25.020 0.817 0.197
(7) Ours (2F) 10.541 22.501 0.913 0.130 26.988 0.928 0.104 27.332 0.920 0.107 25.838 0.864 0.149

(8) Ours (2F1N) 9.326 24.926 0.954 0.094 30.520 0.944 0.085 30.449 0.942 0.085 30.557 0.913 0.112

LEGO (1) TensoIR [7] (1F) 20.195 27.988 0.937 0.089 29.982 0.918 0.090 32.029 0.915 0.093 33.296 0.835 0.156
(2) NVDiffRecMC [6] (1F) 27.239 25.729 0.889 0.146 30.724 0.916 0.104 32.438 0.919 0.103 25.751 0.825 0.177
(3) Ours (1F) 18.952 24.875 0.830 0.178 28.778 0.906 0.081 31.058 0.912 0.082 31.607 0.840 0.152

(4) WildLight [3] (1F1N) 23.565 23.870 0.909 0.129 26.441 0.861 0.135 29.035 0.882 0.123 24.604 0.744 0.175
(5) Ours (1F1N) 18.076 30.801 0.941 0.109 30.834 0.929 0.076 33.366 0.940 0.074 34.096 0.856 0.146

(6) TensoIR [7] (2F) 19.691 28.434 0.947 0.083 29.659 0.915 0.092 32.039 0.920 0.089 32.187 0.822 0.164
(7) Ours (2F) 17.878 26.576 0.861 0.165 29.258 0.913 0.079 31.718 0.928 0.074 32.135 0.859 0.155

(8) Ours (2F1N) 17.287 31.201 0.945 0.101 31.150 0.927 0.075 33.889 0.943 0.068 34.966 0.873 0.139

SHOES (1) TensoIR [7] (1F) 22.918 24.067 0.881 0.150 28.876 0.915 0.111 23.329 0.875 0.117 26.199 0.893 0.126
(2) NVDiffRecMC [6] (1F) 19.268 24.577 0.902 0.119 25.027 0.900 0.125 20.591 0.845 0.169 22.772 0.842 0.155
(3) Ours (1F) 17.267 20.508 0.894 0.075 25.133 0.934 0.061 21.428 0.920 0.079 23.130 0.877 0.119

(4) WildLight [3] (1F1N) 13.843 29.927 0.932 0.116 29.928 0.937 0.095 25.440 0.912 0.111 25.655 0.903 0.102
(5) Ours (1F1N) 16.786 31.241 0.965 0.052 29.494 0.959 0.050 26.118 0.949 0.057 27.249 0.914 0.089

(6) TensoIR [7] (2F) 22.102 24.923 0.898 0.128 30.165 0.924 0.105 23.816 0.858 0.116 24.939 0.886 0.112
(7) Ours (2F) 17.182 25.004 0.926 0.061 30.857 0.964 0.052 26.142 0.935 0.068 26.838 0.909 0.095

(8) Ours (2F1N) 17.006 31.815 0.967 0.051 29.245 0.958 0.048 25.936 0.949 0.055 27.578 0.915 0.098

TROOPER (1) TensoIR [7] (1F) 21.151 32.665 0.961 0.062 32.632 0.953 0.111 30.876 0.942 0.115 29.969 0.928 0.102
(2) NVDiffRecMC [6] (1F) 12.418 35.243 0.968 0.041 33.511 0.970 0.060 31.732 0.960 0.073 28.219 0.869 0.119
(3) Ours (1F) 9.321 33.363 0.941 0.085 35.241 0.972 0.058 34.184 0.962 0.068 31.108 0.935 0.087

(4) WildLight [3] (1F1N) 8.367 36.658 0.979 0.030 34.386 0.974 0.042 34.205 0.974 0.047 33.834 0.946 0.060
(5) Ours (1F1N) 7.755 39.743 0.978 0.041 37.113 0.979 0.038 36.239 0.977 0.045 32.071 0.948 0.069

(6) TensoIR [7] (2F) 17.660 32.541 0.961 0.063 33.160 0.949 0.114 31.576 0.940 0.117 30.928 0.924 0.103
(7) Ours (2F) 9.862 33.579 0.947 0.064 35.420 0.974 0.050 34.252 0.964 0.064 31.303 0.935 0.088

(8) Ours (2F1N) 8.349 39.169 0.975 0.042 36.707 0.977 0.039 36.046 0.976 0.045 32.385 0.949 0.068
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Figure 5. Comparison between the reconstruction under an
anisotropic point light model (adopted by our method) and under
an isotropic point light model.
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Figure 6. Results on synthetic scenes with varying amounts of far-
field lighting.

Light [3] to ascribe spatial variation of radiance to the neu-
ral radiance instead of material. This helps WildLight [3] to
generate diffuse albedo maps that are free of high-frequency
shading effects such as the strong cast shadow on HAND-
BAG from which other methods suffer, but also let it pre-
dict textureless materials, which can be easily observed on
BARRELSOFA. We believe that this shade-baking problem
can be alleviated by introducing more priors on the material
(more likely in a data-driven manner) in future works.

For results under all viewpoints, please see the attached
supplementary video.

8.3. The Anisotropic Point Light Model

Fig. 5 shows that our anisotropic point light model (Eq. (3))
can accurately reconstruct the radiance under a fixed and
anisotropic spotlight while an isotropic one the same as that
used by WildLight [3] fails.

8.4. Results on Few-images-per-lighting Data

Our work does not focus on Internet photo collections (e.g.,
there are hundreds of photos of an object, each under a
unique and unknown lighting) like NeRD [2] because: 1)
Internet photo collections cannot leverage appearance vari-
ation under near-field lights, 2) Internet photo collections
aims at different application scenarios (things on the In-
ternet, usually landmarks with millions of photos) instead
of self-captured photos (things at hand, for which captur-
ing a few environments is more practical). Nevertheless,
our method works well on simulated Internet photo collec-

tions. Fig. 6 shows our results on synthetic scenes with
varying amounts of far-field lighting: 1) 2 lighting, 50 im-
ages/lighting, 2) 10 lighting, 10 images/lighting, and 3) 100
lighting, 1 image/lighting (simulating Internet photo collec-
tions). Due to the absence of near-field lights in the above
setting, there is no more demand to separate radiance under
different light sources. As a consequence, the reduced view
interpolation ability of the radiance cache (due to fewer im-
ages per lighting) does not prevent our method from esti-
mating reasonable material.
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Figure 7. Comparison with state-of-the-art methods on two synthetic scenes: BARRELSOFA and HANDBAG.
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Figure 8. Comparison with state-of-the-art methods on two synthetic scenes: HOTDOG and LEGO.
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Figure 9. Comparison with state-of-the-art methods on two synthetic scenes: SHOES and TROOPER.
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Figure 10. Comparison with state-of-the-art methods on two real-world scenes: GUANYU and DEBUGUNDAM.
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