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To enhance the clarity of the main paper, we include
the following sections in this supplementary material. We
first introduce the analysis and comparison with previous
methods in Sec.A. Ablation studies on spatial group size, Ef-
fective Receptive Fields (ERFs), inference speed and FLOPs,
and Convolutional Schemes are elaborated in Sec.B. More
qualitative and quantitative results are further presented and
analyzed in Sec.C. Finally, limitations and societal impact
are discussed in Sec.D.

A. Comparison and Discussion

Comparison with LinK [1] in s and r Settings. Block
Based Aggregation in LinK [1] divides the entire input space
into several non-overlapping blocks. Then, it utilizes block-
wise proxy aggregation to extract the corresponding features
of proxy nodes. Furthermore, the corresponding features of
the center are obtained by aggregating the features of the
neighboring blocks closest to the center. In LinK, the vari-
able s represents the scale of the block, while r denotes the
scale of the block query. Actually, this paradigm is not novel;
for example, a similar paradigm has already been employed
in 2DPASS [2]. It first divides the entire input space into
non-overlapping voxels (blocks) at four scales: 2, 4, 8, and
16. The features of these voxels are obtained by averaging
the features within each voxel. Then, 3D sparse convolu-
tion is applied to extract features from adjacent voxels. Here,
the kernel size of sparse convolution plays the same role
as r. In addition, we also use s to represent the above four
scales. In Tab. S1, we have fairly compared the receptive
field sizes of each module for three methods, based on the
default hayaparameters of models on the SemanticKITTI
validation dataset [3]. Specifically, three modules are ELK-
Block1 in Link, SPVBlock2 in 2DPASS, and LSK Block in
our LSK3DNet. LinK achieves an equivalent receptive field
size of 21× 21× 21 for the four ELKBlocks in LinK. How-
ever, the second, third, and fourth LSK Blocks in LSK3DNet
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Table S1. Receptive field size. RF represents the receptive field
size, with subscripts denoting the index of the scale.

Size s1/r1 RF1

LinK [1] 3/7 21× 21× 21
2DPASS [2] 2/3 6× 6× 6
LSK3DNet 2/9 18× 18× 18

Size s2/r2 RF2

LinK [1] 3/7 21× 21× 21
2DPASS [2] 4/3 12× 12× 12
LSK3DNet 4/9 36× 36× 36

Size s3/r3 RF3

LinK [1] 3/7 21× 21× 21
2DPASS [2] 8/3 24× 24× 24
LSK3DNet 8/9 72× 72× 72

Size s4/r4 RF4

LinK [1] 3/7 21× 21× 21
2DPASS [2] 16/3 48× 48× 48
LSK3DNet 16/9 144× 144× 144

clearly exhibit larger equivalent receptive fields.

The scales mentioned in section 3.5 and the convolution
kernel size have similar spatial meanings to the s and r
settings in LinK. Please note that we only adopted kernel
size (i.e., r in LinK [1]) as a metric for large kernel design
in the main paper, following LargeKernel3D [4]. Please do
not confuse these two settings.

Performance of LinK. Upon comparing all the results re-
ported in Link [1] and Model Zoo1, we notice that the highest
performance of 67.7% is achieved with a (2× 3)3 receptive
field size, surpassing other sizes such as (3×7)3 and (3×5)3.
Interestingly, the (2× 3)3 receptive field size appears notice-
ably smaller than (3×7)3. It turns out that Link [1] achieves
its stronger performance with a smaller receptive field.

Kernel Size of LargeKernel3D on ScanNet v2 [5]. The
claim that “the performance of LargeKernel3D [4] drops
when scaling up the kernel size over 7×7×7” is concluded
from Table S - 93.

3https://arxiv.org/pdf/2206.10555v1.pdf
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Table S2. Ablation studies on spatial group size.
kernel size Group mIoU (%)

9×9×9 3×3×3 70.2
5×5×5 69.1

13× 13× 3
3×3×3 69.9
5×5×3 69.5
7×7×3 68.9

Table S3. Ablation studies on Depth-wise Group Convolution
and Spatial-wise Group Convolution on ScanNet v2 [5] and Se-
manticKITTI [3].

Methods Kernel mIoU (%)
ScanNet v2

MinkowskiNet-14 [4]
+ depth-wise conv

+ spatial-wise conv
+ spatial-wise conv

7×7×7 68.6
7×7×7 56.4

7×7×7→ 3×3×3 69.7
9×9×9→ 7×7×7 69.6

MinkowskiNet-34 [4]
+ depth-wise conv

+ spatial-wise conv

7×7×7 68.6
7×7×7 68.7

7×7×7→ 3×3×3 73.2
Modified SPVCNN

+ depth-wise conv (SDS and CWS)
+ spatial-wise conv (SDS and CWS)

9×9×9 72.4
9×9×9 67.0
9×9×9 75.7

SemanticKITTI
Modified SPVCNN

+ depth-wise conv (SDS and CWS)
+ spatial-wise conv (SDS and CWS)

9×9×9 67.5
9×9×9 65.4
9×9×9 70.2

B. Ablation Studies
Spatial Group Size. We report the results of the ablation
study on the kernel size selection in Tab. S2. kernel size
means the absolute kernel size. group means the number
of groups to split kernels. We conduct the experiment on
LSK3DNet on the SemanticKITTI dataset, with the same
training hyper-parameters in the main paper. For 3×3×3
group and 9×9×9 kernel size, every group has {3,3,3}
divisions in each dimension. Moreover, 9×9×9 is split into
5×5×5 with {2,2,1,2,2} divisions. For 13×13×3 kernel
size, 3×3×3 group has {4,5,4} divisions in 13-dimensional
axis, and similarly, {2,3,3,3,2} divisions for 5×5×3 group,
{2,2,2,1,2,2,2} divisions for 7×7×3 group. We finally chose
the 9×9×9 kernel size and 3×3×3 group based on our
empirical results. We speculate that this is because each
group has a 3×3×3 size, showing more parameter space
to explore than other group settings. Previous studies have
shown that exploring a large parameter space is important
for dynamic sparse training [6–8]. In addition, the kernel
size of 13×13×3 does not achieve better performance, being
affected by overparameterization and overfitting issues.
Inference Speed and FLOPs. As described in §3.3 and
Sec. D, SDS involves unstructured sparsity, whose GPU
acceleration is still a challenging issue. This is why SDS
could in theory save computation, but in practice that doesn’t
happen (see previous studies of Dynamic Sparse Training [6,
8–15] for related discussion). Thus, only small speed change
(4ms) is observed with SDS in Tab.6. Our speed up mainly

comes from CWS. CWS can significantly reduce the model
size at the channel level, leading to a primary acceleration of
84 ms (177ms→93ms). Moreover, for a similar reason, we
present the theoretical inference FLOPs of the models under
different settings.
CWS. Our CWS is of great importance for building 3D
large kernels. Previous 2D large sparse kernels like [16] fol-
lows a regime of “use sparse groups, expand more”; they
attain better performance with enlarged network width, in-
evitably causing increased model size. This becomes more
pronounced in 3D. For a naive dense kernel, lifting (64-d,
9×9×9) to (128-d, 9×9×9) will cause a significant (somewhat
unacceptable) increase of parameter number: 47.94M →
191.69M. As shown in Tab.7 of the main paper, LSK3DNet
(with CWS) successfully achieves better performance while
using fewer parameters.
Kernel Size. Due to the increased dimensionality, enlarging
3D kernel size brings much heavier computational burden,
compared with 2D kernel. As shown in Tab.5 of the main
paper, comparing Dense (7×7×7, 1×D) and Dense (9×9×9,
1×D), computational burden has 5× rise: 381.2G→1916.3G.
Though large kernel gains larger receptive fields, it brings
risk of overparameterization and overfitting, and is hard to
train. [4, 16–18] encounter a similar issue, e.g., increasing
3×3×3 to 7×7×7 leads to inferior results [4], 31×31
performs worse than 7×7 [16].
Convolutional Schemes. The results of MinkowskiNet-14
and MinkowskiNet-34 are directly taken from LargeKer-
nel3D [4].MinkowskiNet-14 shows stagnation when attempt-
ing to expand the convolution kernel to 9×9×9. As shown in
Tab.S3, we use Modified SPVCNN as the baseline and con-
duct experiments on ScanNet v2 [5] and SemanticKITTI [3].
Our findings indicate that Spatial-wise Group Convolution is
more suitable for 3D large kernel designs, aligning with the
results observed in LargeKernel3D [4]. Therefore, we carry
out dynamic sparse training within the spatial-wise groups.

C. More Qualitative and Quantitative Results
Quantitative Results on NuScenes. In Tab.S4, we present
the results of semantic segmentation on the nuScenes valida-
tion set [19]. Our approach consistently surpasses others by
a significant margin, establishing itself as the state-of-the-art
(SOTA) performer on this benchmark. What’s particularly
intriguing is that our method relies solely on LiDAR data,
yet it outperforms multi-modal techniques [2, 20], which
incorporate supplementary 2D information.
Concrete Results on SemanticKITTI Multi-scan Test. The
full results of our LSK3DNet on the SemanticKITTI [3]
multi-scan test challenge are shown in Tab. S5 and S6.
Our method achieves a state-of-the-art performance on both
mIoU and Acc metrics, surpassing other methods in 12 out
of the 25 categories. Unlike the previous method 2DPASS,
which relies on 2D images as an auxiliary input, our algo-
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Voxel R-CNN LSK3DNet
Figure S1. Qualitative detection results of LSK3DNet and Voxel
R-CNN on the KITTI val split (Sec.4.3). Results in the red box are
false positives.

rithm is purely based on point cloud data, which is a valuable
advantage.
Qualitative Detection Results for KITTI. We compare the
visualization results between LSK3DNet and Voxel R-CNN
for the car category on the KITTI val split [21], as illus-
trated in Fig. S1. The blue-bordered boxes depict ground
truth bounding boxes, while the green-bordered boxes rep-
resent predicted bounding boxes. In comparison to Voxel
R-CNN, LSK3DNet demonstrates more accurate prediction
results.
Qualitative Results for SemanticKITTI. We provide visual
examples of our algorithm on two challenges for 3D seman-
tic segmentation: SemanticKITTI [3] single-scan val chal-
lenge and SemanticKITTI [3] multi-scan test challenge.
The corresponding figures are Fig. S2 and Fig. S3, respec-
tively. Moreover, we display the predicted labels of three
successive frames in one single frame in Fig.S3. It can be
seen that our LSK3DNet produces more accurate predic-
tions than the baseline (Modified SPVCNN [2]). By a larger
kernel size, our LSK3DNet expands the receptive field of
submanifold convolution and enhances the flow of discrete
spatial information. This results in better capturing the object
boundaries and distinguishing between different semantic
classes. As shown, our LSK3DNet can segment the ground
classes and natural objects more effectively.

D. Limitation and Societal Impact
Limitation. Dense matrix multiplications on graphics pro-
cessing units (GPUs) are the foundation of the current state-
of-the-art deep learning methods. However, sparse matrix
multiplications, which are crucial for Dynamic Sparse Train-
ing operations, cannot be efficiently performed [10, 22, 23].
Hence, the FLOPs for inference that we present in the main
paper are based on theoretical calculations. This creates a
need for optimized hardware that can handle such operations.

However, there is a good news that sparsity support is be-
coming a more common feature in hardware design for many
companies and researchers [12, 24, 25]. Our work aims to
inspire more progress in this direction, especially for 3D
tasks.
Societal Impact. Self-driving cars need to efficiently and ac-
curately understand 3D scenes to ensure safe driving. Since
passenger safety is the top priority for autonomous vehicles,
3D perception models are required to achieve both high ac-
curacy and low latency. Autonomous vehicles have limited
hardware resources due to the physical limitations of size
and heat dissipation. Therefore, it is important to design 3D
neural networks that are both efficient and effective for con-
strained computing resources. We use the method of Spatial
Sparse Group to further expand the 3D convolution kernel
size, which overcomes the performance drop of previous 3D
large kernel methods. Moreover, the model is very efficient
due to dynamic sparse and Channel-wise Weight Selection.
License. We study 3D semantic segmentation and object de-
tection on four famous datasets. We use the SemanticKITTI
dataset under the permission of its creators and authors by
registering at https://codalab.lisn.upsaclay.
fr/competitions/6280. Scannet v2 is released un-
der the ScanNet Terms of Use (https://kaldir.vc.
in.tum.de/scannet/ScanNet_TOS.pdf). KITTI
is published under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 License. nuScenes is avail-
able for non-commercial use subject to the Terms of Use (See
https://www.nuscenes.org/terms-of-use).
Computing Infrastructure. The hardware configuration
consists of an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz
and 18GB of memory. The operating system is Ubuntu 18.04.
All the experiments use Tesla V100 GPUs with 32GB of
VRAM. Moreover, our method is executed on top of the
PyTorch framework.
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Table S4. Semantic segmentation results on NuScenes validation set [19]. Regarding input data format, P denotes points, V represents
voxelizations, R signifies range images, 2D3DNet and 2DPASS incorporate additional 2D data. mIoU (%) and IoUs (%) are reported.
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(AF)2-S3Net[26] V 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++[27] R 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet[28] R 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext[29] R 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
AMVNet[30] P 76.1 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9

Cylinder3D[31] V 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet[32] RPV 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

PVKD[33] V 76.0 76.2 40.0 90.2 94.0 50.9 77.4 78.8 64.7 62.0 84.1 96.6 71.4 76.4 76.3 90.3 86.9
2D3DNet[20] V 79.0 78.3 55.1 95.4 87.7 59.4 79.3 80.7 70.2 68.2 86.6 96.1 74.9 75.7 75.1 91.4 89.9

2DPASS[2] PV 79.4 78.8 49.6 95.6 93.6 60.0 84.1 82.2 67.5 72.6 88.1 96.8 72.8 76.2 76.5 89.4 87.2
SphereFormer[34] V 79.5 78.7 46.7 95.2 93.7 54.0 88.9 81.1 68.0 74.2 86.2 97.2 74.3 76.3 75.8 91.4 89.7

LSK3DNet PV 80.1 80.0 52.5 94.5 91.8 58.8 85.8 84.4 71.2 73.8 88.3 96.9 74.8 75.9 75.9 89.3 87.5

Table S5. Quantitative results on SemanticKITTI [3] multi-scan challengetest (Sec.4.2) - Part I. mIoU (%) and IoUs (%) are reported.
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TangentConv[35] 34.1 - 83.9 64.0 38.3 15.3 85.8 84.9 40.3 21.1 1.1 2.0 18.2 18.5 6.4
DarkNet53[3] 41.6 - 91.6 75.3 64.9 27.5 85.2 84.1 61.5 20.0 14.1 30.4 32.9 20.7 15.2

TemporalLidarSeg[36] 47.0 89.6 91.8 75.8 59.6 23.2 89.8 92.1 68.2 39.2 2.1 47.7 40.9 35.0 12.4
SpSeqnet[37] 43.1 - 90.1 73.9 57.6 27.1 91.2 88.5 53.2 29.2 41.2 24.0 26.2 22.7 26.2
KPConv[38] 51.2 89.3 86.5 70.5 58.4 26.7 90.8 93.7 69.4 42.5 5.8 44.9 47.2 38.6 4.7

Cylinder3D[31] 52.5 91.0 90.7 74.5 65.0 32.3 92.6 94.6 74.9 41.3 0.0 67.6 63.8 38.8 0.1
(AF)2-S3Net[26] 56.9 88.1 91.3 72.5 68.8 53.5 87.9 91.8 65.3 15.7 5.6 65.4 86.8 27.5 3.9

PV-KD[33] 58.2 91.9 92.4 77.4 69.9 31.5 92.7 96.2 84.3 50.0 20.9 64.9 64.8 46.4 19.0
2DPASS[2] 62.4 91.4 89.7 74.7 67.4 40.0 93.6 96.2 82.1 48.2 16.1 63.6 63.7 52.7 3.8
LSK3DNet 63.4 92.2 92.1 79.0 67.4 41.0 92.9 96.4 84.4 58.1 7.2 71.2 73.9 61.8 40.9

Table S6. Quantitative results on SemanticKITTI [3] multi-scan challengetest (Sec.4.2) - Part II. mIoU (%) and IoUs (%) are reported.
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TangentConv[35] 34.1 - 79.5 43.2 56.7 1.6 1.9 0.0 30.1 0.0 42.2 49.1 36.4 31.2
DarkNet53[3] 41.6 - 78.4 50.7 64.8 7.5 0.2 0.0 28.9 0.0 37.8 56.5 38.1 53.3

TemporalLidarSeg[36] 47.0 89.6 82.3 62.5 64.7 14.4 40.4 0.0 42.8 0.0 12.9 63.8 52.6 60.4
SpSeqnet[37] 43.1 - 84.0 66.0 65.7 6.3 36.2 0.0 2.3 0.0 0.1 66.8 50.8 48.7
KPConv[38] 51.2 89.3 84.6 70.3 66.0 21.6 67.5 0.0 67.4 0.0 47.2 64.5 57.0 53.9

Cylinder3D[31] 52.5 91.0 85.8 72.0 68.9 12.5 65.7 1.7 68.3 0.2 11.9 66.0 63.1 61.4
(AF)2-S3Net[26] 56.9 88.1 75.1 64.6 57.4 16.4 67.6 15.1 66.4 67.1 59.6 63.2 62.6 71.0

PV-KD[33] 58.2 91.9 86.4 74.1 70.2 16.6 68.5 0.0 69.2 2.0 50.5 70.3 66.9 70.6
2DPASS[2] 62.4 91.4 86.2 73.9 71.0 35.4 80.3 7.9 71.2 62.0 73.1 72.9 65.0 70.5
LSK3DNet 63.4 92.2 86.9 74.2 72.6 29.3 77.4 0.1 69.9 22.8 72.1 72.3 66.7 74.3
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Figure S2. Error maps of Baseline and Ours on SemanticKITTI [3] single-scan val (Sec.4.2).
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Figure S3. Error maps of Baseline and Ours on SemanticKITTI [3] multi-scan val (Sec.4.2).
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