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Supplementary Material

6. Overview
In this supplementary material, we provide a detailed out-
line structured as follows: Sec. 7 delves into additional im-
plementation specifics of NARUTO. Sec. 8 examines the
computation costs associated with each module. Comple-
menting the results in Sec. 4, Sec. 9 extends our analysis
with per-scene evaluations for MP3D and Replica.

7. Implementation Details
Hardware Details We run the experiments on a desktop
PC with a 2.2GHz Intel Xeon E5-2698 CPU and NVIDIA
V100 GPU.

Memory requirement Memory consumption varies de-
pending on the scene size. As a reference, in a 120m3

scene, the corresponding GPU memory and RAM are
8.1GB and 8.6GB respectively. The consumption can be
further reduced with a more efficient implementation as our
current implementation involves intensive exchanges be-
tween RAM and GPU memories.

7.1. Neural Mapping Details
We adopt Co-SLAM [73] as the foundational mapping
framework for our system, adhering to the hyperparame-
ter configurations established therein. For details pertaining
to the hyperparameters specific to the mapping component,
we direct readers to [73] for comprehensive information.

7.2. Efficient RRT Details
Path planning in three-dimensional spaces presents signif-
icant computational challenges, particularly when employ-
ing standard 3D RRT algorithms [35]. In our approach, we
introduce an accelerated version of RRT, dubbed E-RRT
(Efficient RRT), which incorporates several optimizations
for improved performance.

The primary innovation in E-RRT, drawing inspiration
from RRT-Connect [34], is its strategy to first attempt di-
rect connections from the growing tree to the goal at each
iteration. While this does not ensure the shortest path, it sig-
nificantly enhances the efficiency of finding a viable path.

Furthermore, E-RRT enhances the process of node ex-
pansion. Instead of adding a single node, our method inte-
grates a series of feasible points uniformly distributed be-
tween a randomly generated node and its nearest neighbor
in the tree, based on a predefined step size, for instance, 10
cm, up the distance of M ⇥ step size. Here M equals to 10.
This modification substantially accelerates the expansion of
the tree, especially in the initial growth stages.

Figure 7. Equirectangular RGB-D Example Black regions re-
fer to the invalid regions with zero depth measurement. The ratio
of black regions increases significantly when the agent leaves the
building. This is used as a signal for collision detection.

Lastly, we address the increasing computational load
associated with nearest-neighbor searches as the tree ex-
pands. By leveraging parallel processing on a GPU, E-
RRT achieves a consistently high search speed, thus miti-
gating the computational costs that typically escalate with
tree complexity.

7.3. Collision Detection
We have tailored two distinct collision detection method-
ologies to align with the nuances of the Replica and Matter-
port3D datasets.

For experiments conducted within the Replica dataset,
collision detection is facilitated through an SDF map de-
rived from our hybrid scene representation. We assess po-
tential collisions by sampling points at 2 cm intervals be-
tween consecutive states and querying the SDF map at these
points. A collision is inferred when the SDF value at any
point falls below the 5 cm threshold, consistent with our
model of the agent as a sphere with a 5 cm radius.

This protocol effectively prevents the agent from inter-
secting with wall surfaces during simulations. Nonetheless,
it cannot preclude the agent from exiting the scene through
non-watertight boundaries. In contrast, the Matterport3D



dataset, reflecting real-world environments, presents unique
challenges with regions devoid of geometry—artifacts of
incomplete depth data during dataset construction. These
gaps in the environment can erroneously permit the agent
to traverse through “walls” or exit buildings. To counteract
this, in addition to the SDF-based collision detection, we
have developed a specialized collision detection system that
assesses equirectangular depth measurements (e.g. Fig. 7)
at prospective states, calculating the proportion of invalid
regions. An increase in this proportion signals potential
egress from the building, and by establishing a threshold ra-
tio, we can determine the validity of the next state, thereby
preventing unintended departure from the environment.

7.4. Rotation Planning
As delineated in Sec. 3.3, when the agent arrives at a des-
ignated goal state sg , it proceeds to sequentially observe
the top-10 points of uncertainty within its sensing radius
through a series of rotational movements. In an effort to re-
duce the number of steps necessary to cover all ten of these
uncertain perspectives, we have devised a straightforward
rotational planning algorithm. This method involves iden-
tifying the subsequent viewpoint that can be reached with
the least rotational effort and then executing the transition
using a Spherical Linear Interpolation (SLERP) strategy.

7.5. Active Ray Sampling Details
In the context of mapping optimization within Co-
SLAM[73], the conventional approach entails the random
selection of 2048 pixels from the database, supplemented
by a minimum of 100 pixels from the current viewpoint.
Our Active Ray Sampling strategy introduces a refinement
to this process. Specifically, we quadruple the count of
randomly sampled pixels, thus drawing 8192 pixels from
the database and ensuring at least 400 pixels from the cur-
rent viewpoint. Within this augmented sample set, we then
identify and prioritize the 500 most uncertain pixels. The
remaining 1548 pixels are selected from the database, in
addition to a minimum of 100 random points from the cur-
rent viewpoint. This hybrid sampling method effectively
combines the breadth of random sampling with the targeted
insight of Active Ray Sampling, thereby capturing a broad
yet informative snapshot of the environment.

8. Runtime Analysis
8.1. System Runtime
In this section, we present a detailed runtime analysis of
the three major modules in NARUTO, as illustrated in
Fig. 8. The first module is a simulator for data genera-
tion. The second is a mapping module optimized for a hy-
brid scene representation. Lastly, we have an uncertainty-
aware planning module. For data generation, HabitatSim

Method Time (ms) Node Num. Step Num.
RRT 19⇥ 103 19⇥ 103 28⇥ 103

w/o direct line 17⇥ 103 20⇥ 103 21⇥ 103

w/o fast tree 16.00 44.17 2.56
Ours (E-RRT) 5.77 16.70 1.19

Table 3. RRT runtime analysis on Replica-room0. We con-
ducted a runtime analysis of RRT variants, revealing that our opti-
mized RRT implementation significantly outpaces traditional RRT
in planning speed, achieving real-time planning capabilities.

requires, on average, 24.4ms to generate 680⇥ 1200 RGB-
D data per iteration. The Mapping module, although tak-
ing about 300ms per iteration, averages 60.5ms since it is
activated only every five keyframes. The Active Planning
module averages 2.1ms, which includes 0.3ms for colli-
sion detection per iteration. Additionally, Active Planning
encompasses two modules that are triggered occasionally
when the ’PLAN REQUIRED’ condition is met. These are
the uncertainty-aware goal searching, averaging 6.8ms, and
RRT path planning, averaging 5.77 ms. In conclusion, our
analysis demonstrates that NARUTO offers real-time capa-
bilities, particularly due to its efficient planning module.

8.2. RRT Runtime Analysis
In this section, we delve deeper into our optimized RRT im-
plementation, as outlined in Sec. 7.2. We have engineered
a customized version of RRT that enhances planning speed
through several strategies:
• Direct Line: Actively identifying straight paths that link

the RRT tree to the goal.
• Fast Tree: Speeding up the expansion of the tree.
• Parallel Computing: Utilizing GPU processing for in-

creased efficiency.
These innovations significantly reduce the time required

for path planning, making our RRT variant highly suitable
for real-time applications. We present an ablation study on
the runtime performance of our RRT approach in Tab. 3. To
maintain consistency, all experiments were conducted us-
ing parallel processing for nearest-neighbor searches during
tree expansion.

Evaluation Our evaluation of the methods encompasses
three key metrics: the average time taken for each path plan-
ning request, the average number of nodes generated within
the RRT tree, and the average number of steps taken in the
RRT process.

Analysis Compared to traditional RRT, our efficient RRT
implementation is markedly faster, both in average planning
time and iteration count. It also generates fewer nodes and
uses less memory, as shown by the reduced average num-
ber of nodes required per planning request. The ablation



Figure 8. Runtime Analysis in the Replica-room0 Environment This figure illustrates the runtime analysis of each module within the
Replica-room0 environment. A notable runtime impulse is observed during goal-searching iterations. The analysis encompasses three
principal modules: Habitat Simulator for data generation, Active Planning for path planning, and Mapping for mapping optimization. In
the Active Planning module, further runtime analysis includes its submodules: Uncertainty-aware Goal Searching, RRT Path Planning, and
Collision Detection.

study detailed in Tab. 3 highlights that our primary strat-
egy for improvement involves identifying potential straight
paths, drawing inspiration from RRT-Connect [34]. This
approach, along with quicker tree growth, not only acceler-
ates the planning process but also decreases memory usage.

9. Additional Experimental Results
9.1. Detailed results on MP3D and Replica
In this section, we present more comprehensive results for
the various scenes included in the Matterport3D [8] and
Replica dataset [67]. Detailed, scene-specific quantitative
results are provided in Tab. 5 and Tab. 4. For the qualitative
visualization, the reconstructed meshes undergo a culling
process as delineated in Neural RGB-D [2] and GoSURF
[74], ensuring that only the most relevant data is presented.

MP3D In Tab. 5, we present a comparative analysis of our
method against the state-of-the-art Active Neural Mapping
(ANM) [79]. The results demonstrate that our method out-
performs ANM across all evaluated metrics. Most notably,
our method exhibits a significant advancement in terms of
reconstruction quality and completeness, surpassing the ex-
isting benchmarks set by previous art. This consistent supe-
riority in performance underscores the effectiveness of our

approach in challenging reconstruction scenarios.
In Fig. 9, we conduct a qualitative evaluation of our

3D reconstruction method against the ground truth for var-
ious scenes in the Matterport3D dataset. Ground truth
meshes are presented in the odd-numbered rows, while the
even-numbered rows showcase our method’s reconstructed
meshes. Each scene is identified by a unique code (e.g.,
“Gdvg”, “gZ6f”) on the left. We offer a tripartite compari-
son for each: the first and second columns depict the exte-
rior surfaces; the third and fourth columns reveal the interior
surfaces; and the final two columns provide close-up views
of the intricate internal reconstructions. This format delin-
eates a comprehensive visual assessment, contrasting both
the textural and geometric dimensions of the meshes.

In Fig. 11 through Fig. 15, we present per-scene trajec-
tory visualizations on the Matterport3D dataset. For en-
hanced visual clarity, we focus exclusively on illustrating
the trajectory formed by keyframe camera poses and the re-
constructed texture mesh. To provide a thorough perspec-
tive of each scene, we include a bird’s eye view alongside
two distinct side views. This tri-view presentation facili-
tates a comprehensive understanding of the spatial dynam-
ics in each scene. It is important to note that the “black re-
gions” visible in the mesh represent areas lacking ground
truth data, which were consequently excluded from the



Method Metrics office0 office1 office2 office3 office4 room0 room1 room2 Avg.
Neural SLAM

Co-SLAM [73]
Acc. [cm] # 1.68 1.46 2.98 3.07 2.44 2.14 2.64 2.02 2.30
Comp. [cm] # 1.68 1.82 2.70 2.83 2.64 2.25 2.84 2.02 2.35
Comp. Ratio " 96.25 94.44 89.80 90.82 91.59 94.61 90.32 94.09 92.74

[73] w/ ActRay
Acc. (cm) # 1.61 1.48 2.96 3.12 2.43 2.17 2.58 2.00 2.30
Comp. (cm) # 1.61 1.85 2.67 2.96 2.67 2.26 2.78 2.03 2.35
Comp. Ratio " 96.24 94.44 90.61 89.85 91.51 94.66 90.23 94.08 92.70

Neural Mapping: Tracking is disabled.

Co-SLAM [73]
Acc. [cm] # 1.50 1.28 2.56 2.69 2.25 2.01 1.55 1.87 1.96
Comp. [cm] # 1.48 1.61 2.17 2.52 2.47 2.13 1.71 1.88 2.00
Comp. Ratio " 96.33 94.65 92.47 91.43 91.34 94.67 95.45 93.95 93.79

[73] w/ ActRay
Acc. (cm) # 1.47 1.27 2.55 2.71 2.26 2.02 1.57 1.87 1.96
Comp. (cm) # 1.47 1.59 2.13 2.55 2.49 2.07 1.71 1.85 1.98
Comp. Ratio " 96.44 94.80 92.90 91.32 91.32 94.92 95.40 94.12 93.90

Neural Active Mapping

w/o ActiveRay
Acc. (cm) # 1.29 1.05 2.17 2.86 1.72 1.56 1.24 1.46 1.67
Comp. (cm) # 1.40 1.50 1.66 3.14 1.76 1.67 1.45 1.47 1.76
Comp. Ratio " 97.92 95.87 98.04 90.68 98.09 98.31 97.62 98.55 96.89

Uncertainty Net
Acc. (cm) # 1.32 1.05 2.04 3.13 1.70 1.58 1.26 1.45 1.69
Comp. (cm) # 2.12 2.01 2.73 2.50 2.07 1.90 1.58 1.56 2.06
Comp. Ratio " 94.21 93.22 92.62 92.12 94.24 96.36 96.65 97.54 94.62

Full
Acc. (cm) # 1.30 1.03 2.25 2.29 1.75 1.56 1.25 1.47 1.61
Comp. (cm) # 1.39 1.53 1.69 2.27 1.79 1.68 1.43 1.48 1.66
Comp. Ratio " 98.17 95.26 97.54 93.91 97.93 98.28 98.04 98.47 97.20

Table 4. Per-scene quantitative results on Replica[67] dataset

Method Metric Gdvg gZ6f HxpK pLe4 YmJk Avg.

ANM [79]

MAD (cm) # 3.77 3.18 7.03 3.25 4.22 4.29
Acc. (cm) # 5.09 4.15 15.60 5.56 8.61 7.80

Comp. (cm) # 5.69 7.43 15.96 8.03 8.46 9.11
Comp. Ratio " 80.99 80.68 48.34 76.41 79.35 73.15

Ours
MAD (cm) # 1.60 1.23 1.53 1.37 1.45 1.44
Acc. (cm) # 3.78 3.36 9.24 5.15 10.04 6.31

Comp. (cm) # 2.91 2.31 2.67 3.24 3.86 3.00
Comp. Ratio " 91.15 95.63 91.62 87.76 84.74 90.18

Table 5. Per-scene quantitative results on Matterport3D [8]
dataset. Our method achieves consistently better reconstruction
than the state-of-the-art method ANM [79].

mapping optimization process. Our observations indicate
that while our method demonstrates high completeness in
fully exploring the environment, it tends to allocate a con-
siderable number of steps to survey these “black regions”.
This behavior can be attributed to our selective exclusion
of these regions during mapping optimization, which in
turn, prevents effective reduction of uncertainty in these ar-
eas. Our method, prioritizing observation of uncertain re-
gions, thus allocates more attention to these parts. This
phenomenon is a reflection of the challenges posed by the
imperfect simulation of real-world environments.

Replica We present per-scene ablation studies on Replica
in Tab. 4. These results demonstrate that Active Ray Sam-
pling enhances the performance of CoSLAM [73], particu-
larly in scenarios where tracking is disabled. Additionally,
our ablation studies reveal that employing the Uncertainty
Grid (Full) approach yields superior results compared to the
Uncertainty Net across most scenes.

In Fig. 10, we conduct a qualitative evaluation of our 3D
reconstruction method against the ground truth for various
scenes in the Replica dataset. Ground truth meshes are pre-
sented in the odd-numbered rows, while the even-numbered
rows showcase our method’s reconstructed meshes. Our re-
sults show a high level of quality and completeness, closely
mirroring the ground truths.

In Fig. 16 - Fig. 23, we present trajectory visualiza-
tion for each scene. Given that five trials were conducted
for each scene, we selectively showcase the most illustra-
tive visualization result for demonstration purposes. In our
qualitative analysis, we present two key elements for each
scene: the texture mesh visualization and the correspond-
ing planned trajectory. Similarly, we only illustrate the tra-
jectory formed by keyframe camera poses and the recon-
structed texture mesh for better clarity.



Method Metrics office0 office1 office2 office3 office4 room0 room1 room2
CoSLAM Comp. Ratio " 96.33 94.65 92.47 91.43 91.34 94.67 95.45 93.95

(no tracking) Traj. (m) " 18.20 11.56 23.16 29.16 25.22 24.69 16.21 23.07

Ours Comp. Ratio " 98.17 95.26 97.54 93.91 97.93 98.28 98.04 98.47
Traj. (m) " 81.27 30.02 90.20 88.59 96.36 73.91 96.99 41.31

Table 6. Per-scene trajectory length evaluation on Replica[67] dataset

9.2. More qualitative comparison on MP3D
For the completeness of the study, we provide more com-
parison between ground truth, ANM baseline [79], and our
method in Matterport3D dataset, as shown in Fig. 24. We
trim the meshes for a better visualization purpose.

9.3. Comparison against passive mapping methods
In traditional mapping methods, typically involving en-
vironments scanned by human-operated sensing devices,
the trajectory of scanning significantly impacts the recon-
struction’s quality and completeness. Such approaches are
termed passive mapping methods, characterized by the ab-
sence of a planning or guidance module. In Tab. 2, we
present a quantitative comparison between Passive Neural
Mapping and Active Neural Mapping, utilizing Co-SLAM
as the backbone. Here, we aim to offer additional qual-
itative comparisons in Fig. 25 to highlight differences in
reconstruction details more vividly. In passive Co-SLAM
(with tracking disabled), regions may be missed or poorly
reconstructed if not adequately covered by the scanning tra-
jectory. Conversely, our active reconstruction method en-
sures a more comprehensive and accurate reconstruction,
effectively addressing these limitations.

We compared the trajectory lengths of passive versus ac-
tive scanning on the Replica dataset, with the results de-
tailed in Tab. 6. Under the same conditions (2000 frames
with 400 keyframes), passive scanning may result in redun-
dant observations due to the lack of guided scanning. Ac-
tive scanning, on the other hand, enables more extensive
coverage and yields superior reconstruction quality. How-
ever, this approach typically results in longer trajectories,
as the agent continuously moves to ensure comprehensive
scanning of the environment.
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Figure 9. MP3D Reconstruction Results This presents a side-by-side comparison of the reconstruction results with the Matterport3D
dataset. The odd-numbered rows display the ground truth meshes, while the even-numbered rows feature the meshes reconstructed by our
method. Our results show a high level of quality and completeness, closely mirroring the ground truths. This alignment underscores the
efficacy of our method in accurately exploring and reconstructing complex spatial geometries.
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Figure 10. Replica Reconstruction Results This presents a side-by-side comparison of the reconstruction results with the Replica dataset.
The odd-numbered rows display the ground truth meshes, while the even-numbered rows feature the meshes reconstructed by our method.
Our results show a high level of quality and completeness, closely mirroring the ground truths.



Figure 11. Matterport3D (Gdvg) Reconstructed Mesh and planned trajectory.

Figure 12. Matterport3D (gZ6f) Reconstructed Mesh and planned trajectory.



Figure 13. Matterport3D (HxpK) Reconstructed Mesh and planned trajectory.

Figure 14. Matterport3D (pLe4) Reconstructed Mesh and planned trajectory.



Figure 15. Matterport3D (YmJk) Reconstructed Mesh and planned trajectory.

Figure 16. Replica (office0) Reconstructed Mesh and planned trajectory.



Figure 17. Replica (office1) Reconstructed Mesh and planned trajectory.

Figure 18. Replica (office2) Reconstructed Mesh and planned trajectory.



Figure 19. Replica (office3) Reconstructed Mesh and planned trajectory.

Figure 20. Replica (office4) Reconstructed Mesh and planned trajectory.



Figure 21. Replica (room0) Reconstructed Mesh and planned trajectory.

Figure 22. Replica (room1) Reconstructed Mesh and planned trajectory.



Figure 23. Replica (room2) Reconstructed Mesh and planned trajectory.
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Figure 24. More Matterport3D results We trim the reconstruction results for a better comparison. Compared to the baseline method,
ANM [79], our method shows more precise and complete reconstructions.
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Figure 25. Qualitative comparison between active and passive mapping methods. For Co-SLAM [73], we disable the tracking thread
and run the reconstruction using a pre-defined trajectory. Active NARUTO shows a more complete and precise reconstruction, especially
for the regions that have not been adequately covered by the passive scanning.


