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Supplementary Material

The appendix is organized as the following. In Ap-
pendix A, we specify the prompts used to query LLMs in
LARC. In Appendix B, we present additional visualizations
of LARC’s performance. In Appendix C, we include addi-
tional results of LARC on different levels of box prediction
noise. In Appendix D, we discuss the ScanRefer [4] dataset.

A. Prompts
Below, we provide the prompts used to query large language
models, specifically, GPT-3.5 [3], for concepts that satisfy
LARC’s constraints.

Symmetry and exclusivity. We use the following prompt
to categorize relational concepts, where [relations] is the list
of relational concepts automatically extracted from the input
language by LARC’s semantic parser:
We define two kinds of spatial relations: Asymmetric
relations are relations that don’t exhibit reciprocity when
the order of the objects is reversed. Symmetric relations
are relations that exhibit reciprocity when the order of the
objects is reversed. Here are some relations: [relations].
For each relation, specify whether it is a symmetric relation
or an asymmetric relation.

Synonyms. We use the following two-round query to find
visually similar synonyms in object categories, where the
[object categories] list is automatically extracted:
First round: Here are some object categories: [object cate-
gories]. List categories that have similar meanings.
Second round: Within each group, list categories that have
similar appearances.

B. Visualizations
In this section, we present additional visualizations of
LARC’s performance. First, we compare LARC’s predic-
tions to that of prior works on the ReferIt3D [1] dataset.
Then, we provide execution trace examples of LARC. After,
we demonstrate failure cases of LARC and include analyses.
Finally, we show examples of VoteNet [10] object detections
in comparison to ground truth bounding boxes.

Comparison to prior works We present examples
of LARC’s predictions as well as baselines’ on the
ReferIt3D [1] dataset. We see samples in Figure 1 where
LARC outperforms baselines, including NS3D [7], BUTD-
DETR [9], MVT [8], LAR [2], TransRefer [6], and LangRe-
fer [11], in the naturally supervised 3D grounding setting.

Execution traces In Figure 2, we present examples of
LARC’s execution trace. LARC first parses input instruc-
tion utterances into symbolic programs, then hierarchically
executes each modular program to retrieve the answer.

Failure cases We provide several examples of LARC’s
failure cases in Figure 3. In the top row, we see cases where
LARC finds target objects of the correct object category, but
with incorrect relations. In the bottom row, we see cases
where LARC yields target objects of incorrect object cate-
gories. LARC is likely to fail in 3D visual grounding when
the target object category is one without data-augumented
synonyms during training, as it is difficult to learn with few
examples in the naturally supervised setting.

VoteNet detections In Figure 4, we show examples of
VoteNet [10] object detections, used in our low guidance
setting, in comparison to ground truth bounding boxes. We
see that VoteNet detections often result in incomplete point
clouds, due to size corruption or center shift. This noise
leads to additional challenges in 3D visual grounding; how-
ever, VoteNet detections significantly reduce the amount of
labelled 3D data required during inference.

C. Experiments
Noisy detection experiments. We report results of NS3D
and LARC over 6 different levels of box prediction noise in
Table 1, with each column representing ratio of perturbation
on the original box. LARC consistently improves NS3D
under all settings.

Noise level 0.0 0.1 0.2 0.3 0.4. 0.5

NS3D 27.6 22.9 20.7 19.6 13.8 10.7
LARC (Ours) 36.6 35.6 33.5 30.2 24.7 20.1

Table 1. Comparisons under different levels of box prediction noise.

D. ScanRefer
Here, we describe how LARC uses the ScanRefer [4] data
for zero-shot transfer from ReferIt3D [1].

Data construction We first create a subset of ScanRefer
with queries that contain the same objects and relations as in
ReferIt3D, such that we can run all method inference-only.
This ScanRefer subset consists of 384 unseen utterances, on
the same ScanNet [5] scenes.
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Figure 1. LARC’s performance compared to prior works in the naturally supervised setting; each column shows every model’s prediction for
a given instruction.
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filter(scene(), 
kitchen_cabinets)
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Figure 2. LARC’s neuro-symbolic framework executes symbolic programs hierarchically to retrieve the target answers.
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Figure 3. LARC can fail in understanding 3D relations (top row) or 3D object categories (bottom row); its modularity enables such analyses.

Implementation To transfer learned concepts to ScanRe-
fer, we use GPT as LARC’s semantic parser to generate
programs from input language. The programs are executed
as described in the main paper. LARC relies on the general-
ization abilities of LLMs to zero-shot transfer to ScanRefer,

by decomposing new language into learned programs, with-
out requiring any additional training or finetuning of neural
networks. In comparison, end-to-end methods significantly
underperform when faced with unseen input language.



= Ground truth bounding boxes = VoteNet detections

Figure 4. Comparison of ground truth bounding boxes (in blue) and VoteNet detections (in purple) used in the low guidance 3D visual
grounding setting.
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