
On the Road to Portability: Compressing End-to-End Motion Planner for
Autonomous Driving

Supplementary Material

Appendix

A. Implementation Details

A.1. Hyper-parameter Setting

We perform all the experiments using GeForce RTX 3090
GPU. As for training, we use the Adam optimizer [2] for
optimization with a learning rate 0.005 for InterFuser and
0.0001 for TCP. For TCP backbones, the epoch number is
set to 30 and the batch size is set to 24. For InterFuser
backbones, the epoch number is set to 10 and the batch size
is set to 16. We empirically set αr “ 0.1. αz is set to
0.1 for InterFuser and 0.5 for TCP. αe is set to 0.005 for
InterFuser and 0.05 for TCP. The standard deviation σ in
the kernel function for adjusting the smoothness is set to 3.
The action threshold δ is set to 0.1. The Lagrange multiplier
β is set to 0.001. Following the original papers [5, 6], we
set the number of planned waypoints to T “ 4 for TCP and
T “ 10 for InterFuser.

A.2. Image Resolution Setting

For InterFuser, the resolution of camera image is 224ˆ 224
for the front camera and 128ˆ 128 for the side camera, fol-
lowing the original paper [5]. For TCP, the resolution of
camera image is 900 ˆ 256 for the front camera, following
the original paper [6]. The horizontal field of view for all
cameras is set as 100˝. In our method, the BEV scene im-
age is provided by the CARLA simulator [1] and is with a
resolution of 180 ˆ 180.

A.3. Lightweight Planner Architecture Setting

As aforementioned in the main body of the paper, the end to
end motion planners can generally be divided into two main
parts: the perception backbone and the motion producer. In
this paper, we reduce the number of the parameters of these
two parts by taking smaller backbones as lightweight plan-
ners. The detailed configurations of the original planners
and the corresponding lightweight planners are presented in
Table 1.

A.4. Planning-relevant Feature Distillation Module
Setting

In the planning-relevant feature distillation module, we con-
figure both the encoder and decoder of the information bot-

tleneck by using a 3-layer MLPs with a hidden size of 512
and LeakyReLU [3] as the activation function. The dimen-
sion of the planning-relevant feature is set to 256. To trans-
fer planning-relevant knowledge, We empirically select the
middlemost layer of the teacher’s perception backbone to
distill the knowledge to the middlemost layer of the the stu-
dent’s perception backbone. Before inputting the interme-
diate feature map to the information bottleneck encoder, we
perform channel-wise averaging along the channel dimen-
sion.

A.5. Safety-aware Waypoint-attentive Distillation
Module Setting

In the safety-aware waypoint-attentive distillation module,
the BEV encoder consists of a 6-layer CNN followed by a
2-layer MLP with a hidden size of 512. The waypoint en-
coder, on the other hand, is configured as a 2-layer MLP
with a hidden size of 128. Both of these two encoders uti-
lize the LeakyReLU activation function. For simplicity, we
adopt the expert waypoints as the teacher waypoints in this
paper. In the attention mechanism, both of the dimensions
of the query and the key are set to 64.

B. Training Pseudo-code
The training procedure for our PlanKD method is outlined
in Algorithm 1. Firstly, the student planner and teacher
planner undergo forward propagation to obtain their inter-
mediate feature maps and output waypoints. These interme-
diate feature maps are then passed through the information
bottleneck encoder to extract the planning-relevant features.
Using the planning-relevant features from both the teacher
planner and the student planner, we calculate the planning-
relevant knowledge distillation loss. Next, the planning-
relevant features are input to the information bottleneck
decoder to obtain the planning states, which are used to
compute the upper bound of the information bottleneck ob-
jective. Moving on to the safety-aware waypoint-attentive
distillation module, we determine the importance of the
teacher’s waypoints and the expert’s waypoints. Based on
the obtained importance weights, we calculate the safety-
aware waypoint loss, as well as the safety-aware ranking
loss and the entropy loss. Finally, all these losses are ag-
gregated and used as the overall loss for optimization. By
employing PlanKD during the training process, we can de-
velop a portable and safe planner suitable for deployment in
resource-limited environments.



Table 1. Configurations of different planners. Transformer-3 (128) denotes a 3-layer transformer with an embedding size of 128. MLPs-
half denotes MLPs with half of the original hidden size. The inference time per frame is evaluated on GeForce RTX 3090 GPU.

Backbone
Parameter

Count
Camera Perception

Backbone
LiDAR Perception

Backbone
Motion Producer

Backbone
Model
FLOPS

Inference
Time (ms)

InterFuser

52.9M ResNet-50 ResNet-18 Transformer-6 (256) 46.51G 78.3
26.3M ResNet-18 ResNet-18 Transformer-3 (128) 25.52G 39.7
11.7M ResNet-10 ResNet-10 Transformer-3 (64) 11.12G 22.8
3.8M ResNet-6 ResNet-6 Transformer-2 (64) 7.21G 17.2

TCP

25.8M ResNet-34 - MLPs 17.09G 17.9
13.9M ResNet-18 - MLPs-half 8.47G 10.7
7.6M ResNet-10 - MLPs-half 4.15G 8.5
3.1M ResNet-6 - MLPs-half 2.67G 7.2

Algorithm 1 The training procedure of PlanKD

Input: a pretrained large teacher planner FT
θ , dataset D “ tpI, T ˚qu, ground truth planning states Y i, BEV scene represen-

tation B, epochs Ne;
Output: a trained compact student planner FS

ϕ ;
Initialize the parameters of student planner FS

ϕ ;
Initialize the parameters of the two modules in PlanKD;
Freeze the parameters of teacher planner FT

θ ;
for each epoch e from 1 to Ne do

for each batch b in epoch e do
obtain the intermediate feature map hT of teacher planner FT

θ ;
obtain the intermediate feature map hS of student planner FS

ϕ ;
input hT ,hS to IB encoder to derive planning-relevant feature zT ,zS ;
calculate the planning-relevant knowledge distillation loss Lz;
input zT ,zS to IB decoder to derive the prediction of planning states;
calculate the upper bound of the information bottleneck objective LIB ;
derive the attention weight between teacher waypoint wT

i and B;
derive the attention weight between expert waypoint w˚

i and B;
calculate the safety-aware waypoint loss Lw and Lw˚ ;
calculate the ranking loss Lrank the entropy loss Le;
calculate the overall loss L;
optimize the learnable parameters by L;

end for
end for

C. Additional Experiments

C.1. Additional Comparison with KD

Here, we present additional comparison results with other
knowledge distillation methods on the Town05 Long
Benchmark. As shown in Table 2, it is evident that our
PlanKD method continues to outperform previous knowl-
edge distillation methods by a significant margin.

C.2. Additional Ablation Study

To further validate the effectiveness of our method, we per-
form an ablation study on the Town05 Long Benchmark, as

presented in Table 3. The results further demonstrate the
effectiveness of each component in our proposed method.

C.3. Additional Visualizations

To investigate the planning-relevant knowledge extracted
by the information bottleneck, we employ the Grad-CAM
technique [4] to visualize the intermediate feature maps of
InterFuser. The visualization is guided by the gradient of
the planning states within the information bottleneck, re-
vealing where the extracted planning-relevant knowledge is
concentrated. The results are presented in Figure 1. Figure
1(a) represents a normal scene with no moving obstacles.
The planning-relevant knowledge focuses on the lanes, in-



Table 2. Comparisons with other knowledge distillation methods on the Town05 Long Benchmark.

Method Backbone Teacher
Param

Student
Param

Driving
Score(Ò)

Route
Completion(Ò)

Infraction
Score(Ò)

Collision
Rate(Ó)

Infraction
Rate(Ó)

AT

InterFuser

52.9M 26.3M 41.62 85.61 0.472 0.112 0.134
ReviewKD 52.9M 26.3M 40.67 93.25 0.426 0.178 0.168

DPK 52.9M 26.3M 44.29 81.10 0.550 0.095 0.113
PlanKD (Ours) 52.9M 26.3M 55.90 97.44 0.562 0.094 0.093

AT

TCP

25.8M 13.9M 43.31 100.0 0.433 0.159 0.128
ReviewKD 25.8M 13.9M 41.27 94.64 0.431 0.148 0.147

DPK 25.8M 13.9M 43.83 90.27 0.499 0.158 0.146
PlanKD (Ours) 25.8M 13.9M 53.19 93.28 0.579 0.084 0.116

Table 3. Ablation Study of PlanKD on the Town05 Long Benchmark.

Method Backbone Teacher
Param

Student
Param

Driving
Score(Ò)

Route
Completion(Ò)

Infraction
Score(Ò)

Collision
Rate(Ó)

Infraction
Rate(Ó)

PlanKD-w.o.-entropy

InterFuser

52.9M 26.3M 46.73 70.49 0.643 0.141 0.063
PlanKD-w.o.-safe-att 52.9M 26.3M 44.55 75.37 0.555 0.141 0.097

PlanKD-w.o.-IB 52.9M 26.3M 50.17 92.72 0.509 0.162 0.111
PlanKD 52.9M 26.3M 55.90 97.44 0.562 0.094 0.093

PlanKD-w.o.-entropy

TCP

25.8M 13.9M 45.72 71.64 0.668 0.088 0.127
PlanKD-w.o.-safe-att 25.8M 13.9M 45.07 100.0 0.450 0.160 0.121

PlanKD-w.o.-IB 25.8M 13.9M 50.70 100.0 0.507 0.096 0.130
PlanKD 25.8M 13.9M 53.19 93.28 0.579 0.084 0.116

dicating the importance of keeping lane for the ego-vehicle.
In Figure 1(b), where a pedestrian suddenly appears, the
planning-relevant knowledge is directed towards the pedes-
trian, highlighting the need to avoid collision. Figure 1(c)
showcases a situation where a vehicle is in front and a mo-
torbike is driving towards the ego-vehicle. In this case, it’s
important to maintain a safe distance, thus the planning-
relevant knowledge emphasizes other road users. Figure
1(d) depicts a scenario with a traffic light, where the at-
tention is drawn to the state of the traffic light. Finally,
Figure 1(e) shows an intersection scenario where the ego-
vehicle requires extra caution to interact with other road
users. Thus, the planning-relevant knowledge focuses on
the interacting vehicle in front. These visualizations indi-
cate that our method can successfully extracts the knowl-
edge that are significant to planning across various scenar-
ios.

Besides, we also visualize the attention maps generated
by the knowledge distillation method AT [7]. It can be
observed that the generated attention maps contain numer-
ous planning-irrelevant information (especially in Figure
1(a)(b)(c)). This further indicates the superiority of our
method.

D. Limitations and Future Works

Our work mainly focus on the knowledge distillation tech-
nique for compressing end-to-end motion planner in au-
tonomous driving. Exploring the integration of other model
compression techniques, such as quantization and pruning,
into our approach is a promising avenue for future research.
By doing so, we can further reduce the size of the motion
planner and enhance its efficiency.

Besides, we devise a simple yet effective way to take the
safety significance of each waypoint into account via the
learning-based attention. In the future, it is possible to in-
corporate specific expert knowledge about driving to design
a more comprehensive and refined strategy for determin-
ing the importance of waypoints. In addition, the current
method primarily emphasizes the proximity of waypoints
to obstacles as a measure of danger, which captures an im-
portant aspect of safety. The approach is grounded in the
fact that immediate physical distance from obstacles is a
critical factor in potential collisions. While our current ap-
proach prioritizes spatial proximity to obstacles, incorporat-
ing temporal aspects, could indeed offer a more comprehen-
sive safety assessment.

Furthermore, in our approach, knowledge transfer in



(a) (b) (c) (d) (e)

Input

AT

Ours

Figure 1. Visualizations of the intermediate feature maps of InterFuser. The redder regions represent higher activation values. The first
row is the input image of the front camera. The second row is the corresponding attention map generated by AT [7]. The third row is the
corresponding Grad-CAM [4] visualization guided by the gradient of the planning states in the information bottleneck.

the intermediate layer is currently limited to feature maps
within the same sensor modality. For planners that incorpo-
rate multiple sensor modalities, a potential future direction
could involve developing methods to distill knowledge be-
tween different sensors to facilitate cross-modal knowledge
transfer.

Finally, our method trained on CARLA is subject to the
well-known simulation-to-reality gap, which implies that its
performance might differ when deployed in the real world.
This necessitates extensive real-world testing and validation
to ensure that the model’s behavior aligns with expected
safety norms. Safety assurance processes must encompass a
wide range of scenarios and edge cases that vehicles might
encounter, ensuring the model’s robustness and reliability.
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