
PIE-NeRF�: Physics-based Interactive Elastodynamics with NeRF

Supplementary Material

A. Weight derivatives

The displacement field of with Q-GMLS interpola-

tion is u(x) = J(x)q(i.e., Eq (9), where J =
[N1I, N

1
1 I, N

2
1 I, ..., N

11
1 I, ...] ∈ R

3×30n. The Jacobian and

Hessian matrices of J, ∇J⊤

k and ∇2J⊤

k , are required in IP

integration and IP ray warping.

The computation of derivatives boils down to the com-

putation of the Jacobian and Hessian matrices of Q-GMLS

weighting functions Ni, N
j
i and N

jk
i . Recall our weighting

functions:

Ni(x) = p⊤(x)G−1(x)p(xi)w(x− xi),

N
j
i (x) = p⊤(x)G−1(x)p,j(xi)w(x− xi),

N
jk
i (x) = p⊤(x)G−1(x)p,jk(xi)w(x− xi),

where p(x) = [1, x, y, z, x2, xy, xz, y2, yz, z2]⊤ is the Q-

GMLS polynomial basis, and p,j , p,jk are its first- and

second-order derivative respectively, which are trivial to

compute. The notations can be simplified as:

Ni(x) = S(x)p(xi),

N
j
i (x) = S(x)p,j(xi),

N
jk
i (x) = S(x)p,jk(xi),

(1)

for S(x) = w(x−xi)p(x)G
−1(x). Hence, once we get the

Jacobian and Hessian of S(x), we can easily compute ∇J

and ∇2J, since xi does not depend on x. In our implement,

the kernel function is w(x−xi) is w(x−xi) = (1−∥d∥
2
)3,

whose derivatives are:

∇w(x) = −6(1− x⊤x)2x,

∇2w(x) = 6(1− x⊤x)(4xx⊤ − (1− x⊤x)I).
(2)

To compute the derivatives of G(x)−1, we first derive the

derivatives of G(x) as:

∇G(x) =
n
∑

i=1

[p(xi)p
⊤(xi) +

∑

j

p,j(xi)p
⊤

,j(xi)

+
∑

j,k

p,jk(xi)p
⊤

,jk(xi)]⊗∇w(x− xi),

∇2G(x) =
n
∑

i=1

[p(xi)p
⊤(xi) +

∑

j

p,j(xi)p
⊤

,j(xi)

+
∑

j,k

p,jk(xi)p
⊤

,jk(xi)]⊗∇2w(x− xi).

(3)

∇G(x)−1 and ∇2G(x)−1 can then be computed as:

G(x)−1

,j = −G(x)−1G,j(x)G(x)−1,

G(x)−1

,jk = G(x)−1G,k(x)G(x)−1G,j(x)G(x)−1

+G(x)−1G,j(x)G(x)−1G,k(x)G(x)−1

−G(x)−1G,jk(x)G(x)−1.

(4)

Putting together we have:

S,j(x) = w,j(x− xi)G
−1(x)p(x)

+ w(x− xi)G
−1(x)p,j(x)

+ w(x− xi)G
−1

,j (x)p(x),

S,jk(x) = w,jk(x− xi)G
−1(x)p(x)

+ w,j(x− xi)G
−1

,k (x)p(x)

+ w,j(x− xi)G
−1(x)p,k(x)

+ w,k(x− xi)G
−1(x)p,j(x)

+ w(x− xi)G
−1

,k (x)p,j(x)

+ w(x− xi)G
−1(x)p,jk(x)

+ w,k(x− xi)G
−1

,j (x)p(x)

+ w(x− xi)G
−1

,jk(x)p(x)

+ w(x− xi)G
−1

,j (x)p,k(x).

(5)

B. Energy integration

B.1. Potential energy

We assume that each IP is a small elastic cuboid Ωk. The

elastic potential energy is computed as:

Uk =

∫

Ωk

Ψ(F(h))dV

=

∫

h1

2

−
h1

2

∫

h2

2

−
h2

2

∫

h3

2

−
h3

2

Ψ

(

F(
3
∑

i=1

xici)

)

dx1dx2dx3. (6)

We give the derivation for two specific energies namely

ARAP and Neo-Hookean. For simplicity, we omit the nota-

tions of dx1dx2dx3. Also note that:

∫

Ωk

xixjcic
⊤

j = 0, ∀i ̸= j.

ARAP elasticity. The ARAP energy density is

Ψ(F) = ||F−R||2. (7)

With first-order approximate the deformation gradient in-

side the cuboid, the integrated potential is:

Uk =

∫

Ωk

||F+∇F

3
∑

i=1

xici −R||2 =

V

12
tr
(

(F−R)(F−R)⊤
)

+
V

12

3
∑

i=1

h2

i ||∇F · ci||
2
. (8)

Here, ∇F can be obtained as:

∇F =

n
∑

j=1

uj ⊗∇2Nj , (9)

or using generalized coordinates:

∇F = q · ∇2J⊤. (10)

Neo-Hookean elasticity. The Neo-Hookean energy density

is:

Ψ(F) =
µ

2

(

tr (FF)
⊤
− 3
)

− µ log J +
λ

2
log2 J, (11)

where J = det(F). The first term tr(FF⊤) is integrated as:

∫

Ωk

tr

(

(F+∇F

3
∑

i=1

xici)(F+∇F

3
∑

i=1

xici)
⊤

)

= V tr(FF⊤) +
V

12

3
∑

i=1

h2

i ||∇F · ci||
2
. (12)

For the two log terms, we integrate based on the first-order

approximation log J(x) = log J + ∇J
J

·∆x at the center of

the cuboid. The second term is:
∫

Ωk

log J +
∇J

J
·∆x = V log J, (13)

and the third term is:

∫

Ωk

log2 J + 2 log J
∇J

J
·∆x+

1

J2
∇J⊤∆x∆x⊤∇J

= V log2 J +
V

12J2
∇J⊤ C ∇J, (14)

where C is the covariance matrix.

We also need to derive ∇J . Let F = [f1|f2|f3]. The

determinant of F can thus be calculated as J = det(F) =
f1 × f2 · f3. Using the chain rule, we get

∇J =
∂J

∂F
: ∇F, (15)

where ∂J
∂F

= [f2 × f3 |f3 × f1| f1 × f2]. Finally, we

can assemble the potential energy of Neo-Hookean using

Eqs. (12), (13) and (14).

B.2. Derivatives of potential energy

To obtain the generalized energy gradient (fint) and Hes-

sian (∂fint

∂q
), we focus on Ψa = V

12

∑3

i=1
h2
i ||∇F · ci||

2

and Ψb =
V

12J2∇J⊤ C ∇J .

Re-write Ψa as:

Ψa =
V

12

∑

i1

∑

i2

u⊤

i1
ui2 tr

(

∇2Ni1∇
2Ni2C

)

, (16)

where ui is a vector of q’s 3i-th row to (3i + 2)-th row,

NiI is a matrix consist of the 3i-th to (3i + 2)-th columns

of J. As Ψa is quadratic w.r.t. u, we can directly write the

stiffness matrix block of IP e as:

Ke
a,i1,i2

=
V

6
tr
(

∇2Ni1∇
2Ni2C

)

I. (17)

We assemble blocks of all the IPs to get the system stiffness

matrix Ka of Ψa. fint,a is then computed as fint,a = Ka ·q.

Ψb contains many non-linear terms, whose derivatives

are more involved. We use the chain rule to calculate fint,b
and Hessian Kb. To assemble these terms, we need ∂J

∂q
,

∂2J
∂q2 , ∂∇J

∂q
and ∂2

∇J
∂q2 , which are computed as:

∂J

∂q
=

∂J

∂F

∂F

∂q
,

∂2J

∂q2
=

∂F

∂q

⊤

:
∂2J

∂F2
:
∂F

∂q
,

∂F

∂q
= ∇J.

(18)

Here, ∂J
∂F

and ∂2J
∂F2 can be derived as in any J-based hy-

perelastic energy models. Note that J should not be con-

fused with the determinant J . In the following, we denote

f j = ∂f
∂qj

as the partial differentiation of f w.r.t. j-th row of

q to avoid high-order tensor notations:

J
j
,i = f

j
1,i × f2 · f3 + f

j
1
× f2,i · f3 + f

j
1
× f2 · f3,i

+ f1,i × f
j
2
· f3 + f1 × f

j
2,i · f3 + f1 × f

j
2
· f3,i

+ f1,i × f2 · f
j
3
+ f1 × f2,i · f

j
3
+ f1 × f2 · f

j
3,i. (19)

J
jk
,i = f

j
1,i × fk2 · f3 + f

j
1
× fk2,i · f3 + f

j
1
× fk2 · f3,i

+ f
j
1,i × f2 · f

k
3 + f

j
1
× f2,i · f

k
3 + f

j
1
× f2 · f

k
3,i

+ fk1,i × f
j
2
· f3 + fk1 × f

j
2,i · f3 + fk1 × f

j
2
· f3,i

+ f1,i × f
j
2
· fk3 + f1 × f

j
2,i · f

k
3 + f1 × f

j
2
· fk3,i

+ fk1,i × f2 · f
j
3
+ fk1 × f2,i · f

j
3
+ fk1 × f2 · f

j
3,i

+ f1,i × fk2 · f j
3
+ f1 × fk2,i · f

j
3
+ f1 × fk2 · f j

3,i. (20)

Figure 1. Multiview dynamics. We show more results using PIE-NerF. The left shadowed column gives the input NGP-NeRF training

data i.e., static views from different angles. On the right, we show three dynamic scenes, rendered from three different camera poses.

Figure 2. Locking. Linear MLS easily yields locking artifact (left)

while Q-GMLS used in PIE-NeRF produces plausible results with

the same number of DOFs (right).

With these components, the Jacobian and Hessian of Ψb can

be assembled as:

∂Ψb

∂q
= −

V

6J3
∇J⊤C∇J

∂J

∂q
+

V

6J2
∇J⊤C

∂∇J

∂q
, (21)

and

∂2Ψb

∂q2
=

V

2J4
∇J⊤C∇J

∂J

∂q
⊗

∂J

∂q

−
2V

3J3
(∇J⊤C

∂∇J

∂q
)⊗

∂J

∂q
+

V

6J2

∂∇J

∂q

⊤

C
∂∇J

∂q
.

(22)

C. Linear locking

Linear locking refers to the situation where deformation ele-

ments exhibit smaller displacements and appear stiffer than

Deforming

NeRF
GT Ours

C
h
ai

r
C

at
T

o
w

er

sq
u

as
h

sq
u

as
h

sh
ea

r
sq

u
as

h
sh

ea
r

sh
ea

r

Figure 3. Comparison with Deforming-NeRF. We conducted

shearing and squashing deformations on various models, with the

ground truth generated by direct mesh vertex transformations.

Deformation Shear Squash

Metrics MSE↓ PSNR↑ MSE↓ PSNR↑

Chair DN* 0.0096 21.9787 0.0076 23.1212

Ours 0.0022 28.8971 0.0012 31.8755

Cat DN 0.0041 26.0174 0.0025 28.3460

Ours 0.0019 29.5765 0.0012 31.7907

Tower DN 0.0066 23.7911 0.0120 20.9451

Ours 0.0027 27.9968 0.0037 26.4454

Table 1. Quantitative benchmark of Fig. 3: Compared to de-

forming NeRF (*DN in the table), our method consistently demon-

strates better performance – lower MSE values and higher PSNR

scores across all cases.

they actually are. This is due to the limited capacity of lin-

ear deformation models to accurately represent bending and

shearing. When simulating codimensional shapes like rods

and shells, linear GMLS tends to yield locking artifacts. As

shown in Fig. 2, linear GMLS cannot generate correct bend-

ing behavior when the cloth collides with the sphere. The

cloth acts like a stiff plane.

D. More results

D.1. Multiview Dynamics

Fig. 1 reports three additional tests of PIE-NeRF including

collision, thin-shell elasticity, and stiff materials. The re-

Scene Sculpture Ficus Cars Cloth Lego

#PDS 25 379 105 824 80 867 43 974 48 276
#Kernels 58 78 120 100 96
#IPs 150 500 200 300 500

Table 2. Statistics/Settings of PIE-NeRF experiments.

Linear warping Quadratic warping

Figure 4. Codimensional rod and quadratic warping. Q-GMLS

uses quadratic “shape functions” which better handle thin geome-

tries as shown in this example. The rod undergoes large bending

and twisting deformation. Linear ray warping tends to generate ar-

tifacts, while the quadratic warping used in PIE-NeRF accurately

fetches the color information and produces more plausible results.

Figure 5. Thin shell simulation. PIE-NeRF is also compatible

with thin shells. The NeRF-based cloth drops under gravity and

hits a sphere.

sulting novel motions of the scene from different views are

shown in the figure. In the first example, the cars move un-

der gravity and an initial velocity. They then collide with

each other. In the second case, we fix the top corners of a

piece of NeRF cloth, which drops on a wooden ball under

gravity. In this example, the quadratic interpolation used in

Q-GMLS effectively captures the nonlinear cloth dynamics

while locking will occur if one chooses to use linear MLS

with the same number of simulation DOFs. In the last case,

we apply forces to the shovel of the Lego excavator, which

has a relatively stiffer material (5× stiffer than other ex-

amples), resulting in interesting and novel dynamics. We

aggregate statistics on the number of particles, kernels, and

IPs used in these experiments, as well as those described

in the main text for the sclupture and ficus experiments, as

summarized in Tab. 2.

D.2. Deformation Comparison

We benchmark our method against Deforming-NeRF[2] for

shear and squash deformation. Given a known deforma-

tion gradient field u(x), the ground truth is generated by

directly applying it to original mesh vertex positions and

rendered via BlenderNeRF [1]. Deforming-NeRF uses u to

modify its cage mesh to drive the object’s deformation. In

our method, we apply u on IPs and render the deformed

scene using quadratic ray warping. The qualitative results

are shown in Fig. 3. The quantitative results are listed in

Table 1.

D.3. Codimensional Shapes

Q-GMLS can capture nonlinear dynamics of thin shapes

without locking artifacts. To show this feature, we report

two experiments of models with codimensional geometries.

Fig. 4 gives snapshots of simulating an elastic rod attached

to a teapot. Linear MLS could yield shearing locking easily,

while quadratic interpolation avoids this issue. The incor-

poration of deformation gradient during the shape function

computation (i.e., Eq (1)) makes our discretization robust,

and the corresponding quadratic warping method yields bet-

ter images than naı̈ve linear warping as shown in the right of

the figure. Fig. 5 shows another example where a thin-shell

cloth, implicitly encoded with NGP-NeRF, collides with a

sphere. One will easily observe locking issues if linear MLS

is used. Please refer to supplementary documents for more

results.

E. Limitations

As any other computational methods, PIE-NeRF has lim-

itations. The quality of PIE-NeRF relies on the quality

of NeRF reconstruction. As we sample PDS points from

trained NeRF using a fixed and manually-chosen density

threshold, floaters in the radiance field may lead to un-

wanted sample points, affecting both simulation and final

rendering results. Partial or inaccurate reconstruction will

even fail the simulation, because too many unwanted points

will cause incorrect geometric connections, leading to un-

expected simulation failures. Insufficient kernels may also

result in visual artifacts. If the three nearest IPs which

quadratic ray warping is designed to find are not close

enough to each other (this is more likely to happen under

large deformations), the color as their weighted sum can be

inaccurate or incorrect, visually perceived as flickering or

floaters in the background.

References

[1] Maxime Raafat. BlenderNeRF, May 2023. 5
[2] Tianhan Xu and Tatsuya Harada. Deforming radiance fields

with cages. In European Conference on Computer Vision,

pages 159–175. Springer, 2022. 5

	. Weight derivatives
	. Energy integration
	. Potential energy
	. Derivatives of potential energy

	. Linear locking
	. More results
	. Multiview Dynamics
	. Deformation Comparison
	. Codimensional Shapes

	. Limitations

