
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following

Supplementary Material

A. Illustration of the Complete Workflow
In this section, we provide a complete example of the work-
flow, including painting and editing instructions. Fig. A1
illustrates the conversation process for requesting LLM to
create and manipulate the semantic panel, with step-by-
step instructions. Visualized internal results and images are
included for better understanding. Based on the explicit
design of the semantic panel, Ranni presents a fully-
automatic pipeline for assigning and manipulating images
using a conversational approach.

B. Dataset Construction
In this section, we present the details of our data prepara-
tion pipeline, including the attribute extraction and dataset
augmentation process. Furthermore, we showcase visual-
izations of samples from various parts of the semantic panel
dataset.

B.1. Attribute Extraction

Description and Box. Given an image with a complete
caption, we use Grounding DINO [2] to detect all the visible
object boxes along with their corresponding descriptions in
the caption. After the inference of Grounding DINO, we
filter out redundant boxes that have general or meaningless
descriptions, e.g. “an image”, “objects”, etc. We also
remove boxes that have the same description as another box,
with an IoU larger than 0.9.

Colors. For each object, we use SAM [1] mask to extract all
its pixels. We first construct a color palette with CIELab [5]
color space, which consists of 11 hue values, 5 saturation
values and 5 light values. We calculate the color index of
each pixel by searching for its nearest RGB value in the
palette. Then we count the frequency of all color indices for
the object, filter out indices with frequencies smaller than
5%, and pick the top-6 indices as the color representation.
The final output of color attribute is a set of high frequent
indices.

Keypoints. We use the farthest point sampling (FPS)
algorithm [3] to sample keypoints within the SAM mask.
Specifically, we define the candidate set as all the pixel
coordinates (x, y) inside the mask area. We start by
randomly selecting a point and adding it to the sampled
set. Then, for each iteration, we choose a point from
the candidate set that has the farthest distance towards the
sampled set. The distance from a point to a point set is
determined by its distance to the closest point in that set. We
stop sampling when the size of the sampled set exceeds 8 or

Send system prompt setting.

Show me the elements of caption “two
golden kittens on a purple sofa”

(golden kitten, 2), (purple sofa, 1)

Show me the bounding boxes of “Caption:
two golden kittens on a purple sofa. Elements:
[golden kitten, golden kitten, golden kitten]”.

(golden kitten,[434,511,580,751]),(golden kitten,
[712,399,324,425]),(purple sofa,[508,739,950,435])

Show me the colors of “Caption: two golden
kittens on a purple sofa. Elements: [golden

kitten, golden kitten, golden kitten]”.

(golden kitten,[[255, 169, 85],[91, 45, 0],[132, 66, 0],
[173, 86, 0],[21, 21, 21]]),(golden kitten,[[91, 45, 0],
[21, 21, 21],[132, 66, 0],[0, 0, 0],[255, 169, 85],[173,
86, 0]]),(purple sofa,[[122, 79, 132],[99, 79, 132],[0,
56, 91],[160, 104, 173],[21, 21, 21],[0, 0, 0]])

(golden kitten,[[255, 169, 85],[91, 45, 0],[132, 66, 0],
[173, 86, 0],[21, 21, 21]]),(golden kitten,[[91, 45, 0],
[21, 21, 21],[132, 66, 0],[0, 0, 0],[255, 169, 85],[173,
86, 0]]),(purple sofa,[[122, 79, 132],[99, 79, 132],[0,
56, 91],[160, 104, 173],[21, 21, 21],[0, 0, 0]])

Show me the keypoints of “Caption: two golden
kittens on a purple sofa. Boxes: (golden kitten,

[434,511,580,751]),(golden kitten,[712,399,324,425]),
(purple sofa,[508,739,950,435])”.

keypoints: (golden kitten,[[512,776],[188,148],
[644,320],[208,536],[324,864],[400,300],[376,620],
[524,536]]),(golden kitten,[[664,460],[716,192],
[848,364],[660,308],[772,560],[560,428],[752,352],
[740,308]]),(purple sofa,[[164,732],[976,752],
[564,940],[752,560],[260,1020],[368,536],[856,920],
[668,788]])

Paint it.

Modify the caption and conditions for the following
instruction: “turn the smaller kitten to be white”.

Caption: a golden kitten and a white kitten on a
purple sofa.
Box: (golden kitten,[434,511,580,751]),(white kitten,
[712,399,324,425]),(purple sofa,[508,739,950,435])
Color: (golden kitten,[[255, 169, 85],[91, 45, 0],
[132, 66, 0],[173, 86, 0],[21, 21, 21]]),(white kitten,
[[255, 255, 255], [233, 233, 233],[255, 254, 212]]),
(purple sofa,[[122, 79, 132],[99, 79, 132],[0, 56, 91],
[160, 104, 173],[21, 21, 21],[0, 0, 0]])
Keypoints: (golden kitten,[[512,776],[188,148],
[644,320],[208,536],[324,864],[400,300],[376,620],
[524,536]]),(white kitten,[[664,460],[716,192],
[848,364],[660,308],[772,560],[560,428],[752,352],
[740,308]]),(purple sofa,[[164,732],[976,752],
[564,940],[752,560],[260,1020],[368,536],[856,920],
[668,788]])

Paint with memory.

The editable area is:

Visualization

Figure A1. Examples of a complete generation process by
Ranni with painting and editing instructions.

when the farthest distance is smaller than 0.1 (the distance
is normalized to the range [0, 1]).

In Fig. A2, we show visualizations of samples with all
extracted attributes. Since all the attributes in semantic
panel can be automatically extracted for existing image-text
pairs, we can easily scale up the dataset and enable efficient
training of Ranni.

B.2. Dataset Augmentation

Generate Synthesised Captions. We use Llava [8] to
generate captions for dataset augmentation. Llava is a
visual question answering model that provides answers to
questions based on the content within a given image. First,
we ask it to pick out images with only one object by asking:
“Is there only one element or object in the image?” Images
with the answer “No” are kept because their raw captions
usually overlook the details of some objects. Next, we
request captions for these images with a limited length:
”Analyze the image in less than twenty words, focusing on
all objects in this image.”

Generate Pseudo Data. The pseudo samples are generated
by creating random prompts and arranging random visual
elements for them according to specific rules. Firstly, we
generate random prompts from a pool of diverse objects,
and assign varying colors and numbers to each prompt. In
cases involving spatial relationships, we randomly specify
the relative positions of the objects. For the spatial ar-
rangement of their bounding boxes, we create a large set
of prompts and randomly assign positions. We then select
appropriate samples based on the criterion of maximizing
the separation of elements. This effectively prevents the
issue of object concentration in pseudo data. The spatial
arrangement is specifically designed for prompts with spa-
tial relationships, such as “on the left of”.

C. Implementation Details of Text-to-Panel
In this section, we show the details of LLM-based text-to-
panel generation in Ranni. This process is conducted step-
by-step for different attributes in panel. For all the attribute
generation, we carefully search for a system prompt to
leverage the zero-shot ability of LLM. All the system
prompt templates are shown in Fig. A3.

C.1. Description Generation

The description generation is the first step, which finds out
all the elements to be appeared in the image. The task is a
pure language-based problem, without requiring knowledge
on visual space. Therefore, we directly leverage the zero-
shot ability of LLM for this task. As the system prompt
shown in Fig. A3, we define a specific output format on
this task. Instead of a raw set of element descriptions,
we request LLM to generate each unique element with

its number, e.g., “(cat, 3)”. We empirically observe that
such a strategy results in better performance of description
prediction, especially for objects with larger number of
amount. Furthermore, we also request the LLM to ignore
style descriptions and all invisible objects. We find it works
well to ignore the unwanted objects, such as “a sky without
cloud”.

C.2. Box Generation

It is more challenging to generate bounding boxes of
predicted elements in the above process. The region
information of bounding boxes gets closer to the image
modality, requiring more knowledge on spatial distribution.
First, we design the system prompt to teach the LLM
understanding the coordinate system of image, i.e. the x
and y axis, with values increasing from left-to-right and top-
to-bottom, respectively. For the output format of bounding
boxes, we find it useful to define it as [xc, yc, w, h], where
(xc, yc) is the center point of the box, and (w, h) is the
width and height of box. Different from the most commonly
used [x1, y1, x2, y2] indicating the top-left and bottom-right
of the box, our used format is more friendly to LLM. The
size of box is fixed when moving to different position,
which helps LLM to learn the relationship between object
description and its size.

C.3. Color Generation

We define the color representation as discrete indices in
a 156-colored palette. Such a discrete representation is
necessary to relax the range of output. In practical, we
test different strategies for color prediction: (1) Use the
name of each color in the palette. It can relax the color
prediction as a easier task of language model, but restrict the
size of palette for accurate representation. (2) Use the color
indices, and predict the index list. This strategy is hard to
learn for LLM, without any knowledge on the color indices
and their relationship. (3) Use the color indices, and predict
the RGB value list. This strategy helps LLM to understand
the colors and relationships. We choose the final strategy in
our method.

C.4. Keypoints Generation

The keypoint generation is the most difficult task of LLM in
Ranni. We find that it is hard to prompt LLM with a good
initial prediction, by carefully setting system prompt. Thus,
we focus on helping LLM to output in a correct format, and
learn the ability of keypoint prediction in the fine-tune stage.
As shown in Fig. A3, we also provide the predicted box of
each object, which restrict the distribution of keypoints to
be inside the box.

On an NVIDIA A100 GPU, the averaged runtime is
6.75± 1.65s for text-to-panel with Llama2-13B.

Three birds standing in
a grassy field.

A teapot and two cups
arranged on a table.

A young woman wearing
a maroon top, standing
in front of a white wall.

Two people are sitting
on a rock wall, with a
bottle of water and a

backpack nearby.

Several small stuffed
birds, including

chickens placed on a
yellow surface. Some

birds are holding signs,
and there are eggs

scattered around them.

A white table with a
vase, a pitcher and
and a picture frame.

Image Description & Boxes Colors KeypointsCaption

Figure A2. Visualization of samples in the semantic panel dataset, with all the extracted attributes based on the orignal text-image pair.

Description
Generation

 I will provide you a caption of image, please imagine the image and generate text description of all elements that should be contained in the
image. Also show the number of each element. Only generate noun phrases indicating visible objects in the image. Include their description
words, e.g. a white cat. For example:

 Caption: Two dogs and three cats playing on the grass, 4K image, best quality
 Elements: (dog, 2), (cat, 3), (grass, 1)

 Caption: Draw an image of a basket of green apples on the wooden table, in style of oil painting
 Elements: (green apple, 6), (wooden table, 1)

 Now show me the elements of caption "{}" in the above format. Answer shortly. Directly answer the elements. Do not repeat the caption.

Box
Generation

 I will provide you a caption of an image and all elements contained in it. Your task is to imagine the image and generate the bounding boxes
for the provided element. The image is 1024 in width and 1024 in height, with a x-axis from left to right, and a y-axis from top to bottom. Then
coordinate [x,y] is [0,0] for top-left, [1024,0] for top-right, [0,1024] for bottom-left and [1024,1024] for bottom-right. Each bouding box should
be in the format of (element name, [x coordinate of element center, y coordinate of element center, width of element, height of element]).
 1. For the coordinate, elements on left have smaller x, while elements on top have smaller y. Refer the caption and relations among elements
for reasonable positions.
 2. For the width and height, refer to the element description to generate reasonable size. Also refer to the element position and image size to
avoid overlap with image boundary.
 For example:

 Caption: A white cat on the right of a black dog playing on the grass
 Elements: [a white cat, a black dog, the grass]
 Boxes:[(a white cat, [710,558,414,477]), (a black dog, [287,462,390,691]), (the grass,[512,731,1024,586])]

 Caption: Two red apples lie on a green plate
 Elements: [a red apple, a red apple, a green plate]
 Boxes:[(a red apple, [403,668,300,300]), (a red apple, [630,628,300,300]), (a green plate, [506,816,738,72])]

 Now show me the boxes of "Caption: {}, Elements: {}". Answer shortly. Directly answer the boxes. Do not repeat the caption and elements.

Color
Generation

 I will provide you a caption of an image and all elements contained in it. Your task is to imagine the image and generate the main colors for
the provided element. For each element, generate a list of at most 6 colors in format of [R,G,B]. For example:
 Caption: A white cat on the right of a black dog playing on the grass
 Elements: [a white cat, a black dog, the grass]
 Colors: [(a white cat, [[255,255,255], [128,128,128]]), (a black dog, [[0,0,0], [169,169,169]]), (the grass,[[0,255,0], [128,128,0]])]

 Now show me the colors of "Caption: {}, Elements: {}"

Keypoints
Generation

 I will provide you a caption of an image and all elements in it with bounding boxes. Your task is to imagine the image and generate the
keypoints for the provided element. The image is 1024 in width and 1024 in height, with a x-axis from left to right, and a y-axis from top to
bottom. Each bouding box is presented in the format of (element name, [x1, y1, x2, y2]), where [x1,y1] is the top-left and [x2, y2] is the bottom-
right of the box. For each element, generate a list of at most 8 keypoints' coordinates like [[x,y], [x,y], ...]. Noted that all the keypoints should be
inside of the corresponding element bounding box.

 Now show me the keypoints of "Caption: {}, Boxes: {}"

Editing I will provide you caption of an image and all bounding boxes in it. Your task is to edit the caption and bounding box (bbox) following my
instructions. The image is 1024 in width and 1024 in height, with a x-axis from left to right, and a y-axis from top to bottom. Then coordinate
[x,y] is [0,0] for top-left, [1024,0] for top-right, [0,1024] for bottom-left and [1024,1024] for bottom-right. Each bouding box should be in the
format of (element name, [x coordinate of element center, y coordinate of element center, width of element, height of element]). I will ask you to
add, delete, move, resize or change labels of elements. For adding element, append its bbox to existing boxes. For deleting element, find the
specified one and remove it. For moving or resizing element, find the element's bbox and change its position or size. For changing element,
change its element name. Noted elements on top have smaller y coordinate, and elements on left have smaller x coordinate.

 The caption is “{}”, and the original object bbox information is “{}”.
 Please adjust the caption and bbox for the instruction “{}”

Figure A3. System prompts for all the LLM-based tasks in Ranni. We leave “{}” in red for positions of depended conditions.

D. Implementation Details of Panel-to-Image

In this section, we present the details of panel-to-image,
a controllable image synthesis process based on predicted
semantic panel. As we have mentioned, the controlling
strategy for panel-to-image contains two parts, i.e. panel
conditioning and attention restriction.

D.1. Panel Conditioning

We first encode each attribute in the semantic panel into a
comprehensive condition:

(1) For the text description, we get its CLIP text embed-
ding [4] individually. We use the same CLIP weights as
the main text-to-image model, but take the global sentence
embedding instead of word embedding.

(2) For the bounding box, we draw a binary mask in the
same shape of image latent. The coordinates of box are
resized into the latent space, i.e., 1/8 of original value. Then
we set all positions inside the box as value 1 in the mask.

(3) For the colors, we have got a list of color indices.
Then we set a binary vector in size of 156 (same as the
palette size), and set 1 for the given color indices. The
vector is then mapped to a feature vector with learnable
linear projection.

(4) For the keypoints, we draw a binary mask same as
box. For each point, we draw a circle with radius of 6, and
set 1 inside the circle.

All the conditions are then mapped by learnable convo-
lutions into the same channel. To merge the the conditions
in different shape, we further repeat the 1D conditions (text
and color) into the same shape of image, and multiply it
with the binary mask of bounding box. Finally, we sum all
conditions up, and average it over all objects.

Except for the training strategy in main paper, we also
study the strategy based on ControlNet [7], which digests
the condition with a copied bypass encoder. Since the
final condition map is a feature map in same shape of
image latent, we can easily train a ControlNet for this
task. In practical, we find comparable performance for
the two different strategy, and choose the previous one for
efficiency. To accompany Ranni with existing models,
e.g., Stable Diffusion [6], it would be better to choose
ControlNet as a plug-in module for the base model.

D.2. Attention Restriction

In the above process, we use sentence embedding for
semantic description. When the phrase of description
comes longer, e.g. “a red metal apple”, the generated image
may loss some semantics. To address this issue, we further
introduce a controlling strategy for better alignment. It
works via rectifying the cross-attention layer of diffusion
model.

The present diffusion model involves cross-attention
between NI image patches and NT words of input prompt.
Given the generated semantic panel, we have already known
the exact correspondence between patches and words. Then
our rectifying is to restrict the attention map to follow
such correspondence. We generate a attention mask M ∈
RNI×NT for such rectifying. For each object, we first
locate the index range [is, ie] as its text description in the
whole prompting text, then locate [js, je] as the related
image patches inside the bounding box. Then the attention
mask is set as M [is : ie, js, je] = 1, otherwise 0. We
apply attention mask for all the cross-attention layers in the
diffusion model.

The cross-attention rectifying significantly improves the
alignment of semantics. But it can not restrict the object
to be located inside the box. Thus, we combine it with

the training-based panel conditioning together, and achieve
better controlled generation.

On an NVIDIA A100 GPU, the averaged runtime is
19.28 ± 0.19s for panel-to-image with our pre-trained 3B
UNet and 50 diffusion steps.

E. Failure Case Analysis
We show failure cases in Fig. A4, including semantic
confusion, wrong spatial relationship and missing objects.
The text-to-panel stage might generate results with wrong
or highly-overlapped positions in such cases, leading to
failed images in final generation. As a preview, the users
can refresh or adjust the elements before generating images
for remedy. It is also observed that the panel-to-image
generation is not strictly controlled by the panel, and shows
some robustness to rectify improper layout from the first
stage.

#�VKIGT��C�NKQP��C�
NGQRCTF�CPF�C�ECV

#�OCP�YKVJ�TGF�JCV��
[GNNQY�UWPINCUUGU��ITGGP�

UWKV�CPF�DNWG�DQYVKG

#�DGG�KU�RGTEJGF�QP�C�TGF�
HNQYGT��YKVJ�C�RWTRNG�HNQYGT�
CPF�C�DNWG�HNQYGT�PGCTD[

#�ECV�HN[KPI�KP�VJG�UM[��C�
DQCV�QP�VJG�YCVGT��CPF�C�
UWP�KP�VJG�DCEMITQWPF

Figure A4. Failure cases of Ranni.

F. More Results
In this section, we show more results of Ranni. Fig. A5
shows editing samples with more detailed re-colorization
by setting the color attribute. Fig. A6 shows shape-editing
samples by re-arranging the keypoints, where we set a main
direction to reshape the object. Fig. A7 shows more editing
results of the six unit operations. Fig. A8 shows more
samples generated by Ranni.

References
[1] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloé Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross B. Girshick. Segment anything. ArXiv, abs/2304.02643,
2023. 1

[2] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, and Lei Zhang. Grounding DINO: marrying DINO with
grounded pre-training for open-set object detection. ArXiv,
abs/2303.05499, 2023. 1

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Adv. Neural Inform. Process.
Syst., pages 5099–5108, 2017. 1

A cake on the table A flower in the valleyA ballon in the sky

Figure A5. Examples of color editing.

A woman
on the
street

A colorful
smoke in
the blue

sky

A cat on
the sofa

A tree in
the

sunset

Figure A6. Examples of shape editing. The blue arrows indicate the direction of keypoints moving.

Addition Removal

Resizing Re-position

Replacement Re-colorization

Figure A7. More editing cases of unit operations.

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.

/QPGV	U�QKN�RCKPVKPI�QH�C�
YQOCP�KP�YJKVG�FTGUU�

RWVVKPI�WR�C�ITGGP�WODTGNNC��
YKVJ�JGT�UQP�PGCTD[��6JG[�
CTG�UVCPFKPI�QP�VJG�ITCUU�

WPFGT�DNWG�UM[�

5GNHKG�QH���DQ[U�
CPF���IKTNU�YKVJ�VJG�
'KHHNG�VQYGT�KP�VJG�

DCEMITQWPF�

6JTGG�MKVVGPU�
CPF�C�%QTIK�QP�
VJG�QTCPIG�UQHC�

)QNFGP�TGVTKGXGT�
YGCTKPI�C�DNWG�
DGTGV��C�[GNNQY�
UWPINCUUGU�CPF�C�

TGF�UECTH�

#�2QOGTCPKCP�YGCTKPI�
C�ETQYP�UCV�QP�VJG�

MKPI	U�VJTQPG��CPF�VYQ�
ECVU�UVQQF�QP�GKVJGT�
UKFG�QH�VJG�VJTQPG�

6JG�YJKVG�ENQWF�
QP�TKIJV�QH�C�
TGF�JQWUG�

6JG�HNQYGT�KU�QP�
NGHV�QH�VJG�CPIGN�
CPF�VJG�DCNNQP�KU�

QP�TKIJV�

#�IKCPV�ECV�YGCTKPI�C�
YJKVG�84�INCUUGU��YCNMKPI�
KP�.QPFQP�UVTGGV��+P�VJG�
DCEMITQWPF��VJG�$KI�$GP�

KU�QP�NGHV�YJKNG�VJG�
.QPFQP	U�G[G�KU�QP�TKIJV�

9QNHOCP�UKVVKPI�KP�CP�
QHHKEG�EWDKENG��JQNFKPI�C�

DTGCF�KP�HTQPV�QH�VJG�FGUM��
6JGTG�KU�C�IQNFGP�ENQEM�
JCPI�QP�VJG�YCNN�DGJKPF�

#�YKPFKPI�TKXGT�QP�VJG�
DQVVQO��C�HN[KPI�DKTF�QP�
VJG�VQR��+P�VJG�FKUVCPEG�
YGTG�DNCEM�CPF�YJKVG�
RGCMU�UJTQWFGF�KP�HQI�

#�UJGGR�YGCTKPI�C�
EQYDQ[�JCV�CPF�ITGGP�

NGCVJGT�LCEMGV�UCV�QP�VJG�
MKPI	U�VJTQPG��#�EQY�CPF�
C�FGGT�UVQQF�QP�GKVJGT�
UKFG�QH�VJG�VJTQPG�

#P�GNGRJCPV��C�
IKTCHHG��C�TJKPQP��

CPF�C�JKRRQ�

#�TGF�DQQM�HN[KPI�QP�
VJG�UM[��#�DKTF�UVCPFU�
QP�VJG�TKIJV��YKVJ�C�NQV�

QH�ENQWFU�CTQWPF�

6JG�GCTVJ�KU�
QP�DQVVQO�QH�
VJG�VTGG�

#�TCDDKV��C�TCV��
C�JCOUVGT��CPF�

C�MQCNC�

Figure A8. More samples generated by Ranni.

In Int. Conf. Mach. Learn., pages 8748–8763, 2021. 4
[5] Sergeyk. Rayleigh: Search image collections by multiple

color palettes or by image color similarity., 2016. 1
[6] stability.ai. Stable Diffusion 2.0 Release, 2022. 5
[7] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding

conditional control to text-to-image diffusion models. In Int.

Conf. Comput. Vis., 2023. 5
[8] Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou,

Nedim Lipka, Diyi Yang, and Tong Sun. Llavar: Enhanced
visual instruction tuning for text-rich image understanding.
ArXiv, abs/2306.17107, 2023. 2

	. Illustration of the Complete Workflow
	. Dataset Construction
	. Attribute Extraction
	. Dataset Augmentation

	. Implementation Details of Text-to-Panel
	. Description Generation
	. Box Generation
	. Color Generation
	. Keypoints Generation

	. Implementation Details of Panel-to-Image
	. Panel Conditioning
	. Attention Restriction

	. Failure Case Analysis
	. More Results

