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Supplementary Material

In this supplementary material, we provide additional
ablation on our design choice of the SAGE Net and imple-
mentation specifics.

A. Extra Ablation Studies
A.1 Input sequence length

Our model adheres to the online inference setting, where it
processes sparse tracking signals from the past N frames
and predicts the full body motion of the final frame as done
in [2, 8]. As indicated in [1, 2, 8], the length of the input
sequence is a critical factor affecting the model’s perfor-
mance, involving a balance between efficiency and effec-
tiveness. Therefore, it is essential for our model to effec-
tively tackle shorter sequences, as this not only maintains
performance but also significantly reduces computational
costs.

We examine AvatarJLM [8] and our method with dif-
ferent input lengths N under setting S1, as presented in
Tab. A. The results demonstrate that our proposed SAGE
Net is more robust to variations in the input sequence length
compared to the baseline method, AvatarJLM [8]. Notably,
SAGE Net is able to exceed AvatarJLM’s performance even
when utilizing just a quarter of their sequence length (10
frames for our method compared to 40 frames for Avatar-
JLM).

A.2 Predicting noise

Our SAGE Net follows the approach of previous meth-
ods [5, 6] by directly predicting the raw data during the dif-
fusion process, specifically the clean latent z0 in our con-
text. In this subsection, we adapt the diffusion process to
predict the residual noise ϵ instead of z0, while maintaining
all other components as they are, to validate the effective-
ness of this design choice. Results are detailed in Tab. B.
We observe that compared with predicting the noise ϵ, this
strategy leads to enhanced performance.

B. Implementation Details
B.1 Disentangled VQ-VAE

The VQ-VAEup and VQ-VAElow follow the architecture
in [3], unitizing a 4-layer transformer network [7]. Each
of these transformer layers includes a 4-head self-attention
module and a feedforward layer with 256 hidden units.

For the training of VQ-VAEs, we employ a set of loss
terms including a rotation-level reconstruction loss, a for-
ward kinematic loss as proposed in [2], and a hand loss as
proposed in [8] with batch size of 512. Adam optimizer

is adapted for training, and we set its Betas parameters to
(0.9, 0.99) and the weight decay rate to 1e − 4. The initial
learning rate is 1e−4 and decreases by a factor of 0.2 at the
milestone epochs [25, 35, 50].

B.2 Stratified Diffusion

In our transformer-based model for upper-body and lower-
body diffusion, we integrate an additional DiT block as de-
scribed in [4]. Each model features 12 DiT blocks, each
with 8 attention heads, and an input embedding dimension
of 512. The full-body decoder is structured with 6 trans-
former layers.

The diffusion process is trained with 1000 sampling
steps, employing the “squaredcos cap v2” beta schedule.
For this schedule, we set the starting beta value at 0.00085
and the ending beta value at 0.012. The training of the
upper-body diffusion model, lower-body diffusion model,
and the full-body decoder Dfull, is conducted sequentially.
Each component is trained with a batch size of 400, using
the Adam optimizer. We set the weight decay at 1e-4 and
begin with an initial learning rate of 2e-4. The learning rate
undergoes a reduction by a factor of 0.25 at the milestone
epochs of 20 and 30.

B.3 Refiner

The refiner is a simple two-layer GRU for smoothing the
output sequence with minimal computational expense. Dur-
ing the training stage, the refiner learns to predict the resid-
ual error Θ̂res between the ground truth motion Θ and the
predicted motion Θ̂ from the full-body decoder. The final
rotation prediction Θ̂final can be obtained by:

Θ̂final = Θ̂ + Θ̂res (1)

For achieving a balance between smoothness and accuracy
in the predicted motion sequences, we adopt various loss
terms previously utilized in related research [2, 8]. These
include the rotation-level reconstruction loss Lrec, the ve-
locity loss Lvel, and the forward kinematic loss Lfk.

In addition, we design a new loss term jitter loss Ljitter

to directly control the jitter:

Ljitter =
f3

N − 3

i=N−3∑
i=1

||(v̂i+2 − v̂i+1)− (v̂i+1 − v̂i)||2 (2)

where v̂i, i = 1, 2..., N − 1, represents the predicted joint
velocity of ith frames, and f represents the fps (frames per
second).



Method Length MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Jitter

AvatarJLM 10 3.19 3.76 24.67 1.31 1.84 7.13 11.39
AvatarJLM 20 3.76 3.52 21.69 1.25 1.73 6.65 9.17
AvatarJLM 40 2.90 3.35 20.79 1.24 1.72 6.20 8.39

SAGE (Ours) 10 2.56 3.34 22.45 1.34 1.44 6.08 8.07
SAGE (Ours) 20 2.53 3.28 20.62 1.18 1.39 6.01 6.55
SAGE (Ours) 40 2.51 3.20 19.36 1.39 1.43 5.75 7.28

Table A. Ablation of the input sequence length. The purple background color denotes the motion length used in the original methods.
The computational cost is directly proportional to the length of the input sequence, so we select 20 as our choice for the optimal trade-off
between performance and computational cost.

Method MPJRE MPJPE MPJVE Hand PE Upper PE Lower PE Root PE Jitter

SAGE (pred noise) 3.64 4.43 25.18 3.79 2.41 7.38 3.64 9.00
SAGE (Ours) 2.53 3.28 20.62 1.18 1.39 6.01 2.95 6.55

Table B. Ablation of the diffusion formulation: Predicting original latent z vs predicting the residual noise ϵ. Predicting clean latent z
achieves superior performance. The purple background color denotes our choice.

The complete loss term for training the refiner can be
written as:

L = α ∗ Lrec + β ∗ Lvel + γ ∗ Lfk + δ ∗ Ljitter

We set α, β, γ, δ to 0.01, 10, 0.05, and 0.01 to force the
refiner to focus more on motion smoothness in the training
process.

All experiments can be carried out on a single NVIDIA
GeForce RTX 3090 GPU card, using the Pytorch frame-
work.

References
[1] Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke,

Ali K. Thabet, and Artsiom Sanakoyeu. Avatars grow legs:
Generating smooth human motion from sparse tracking in-
puts with diffusion model. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 481–490,
2023. 1

[2] Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender, Larissa
Laich, Patrick Snape, and Christian Holz. Avatarposer: Ar-
ticulated full-body pose tracking from sparse motion sensing.
In European Conference on Computer Vision (ECCV), pages
443–460, 2022. 1

[3] Thomas Lucas, Fabien Baradel, Philippe Weinzaepfel, and
Grégory Rogez. Posegpt: Quantization-based 3d human mo-
tion generation and forecasting. In European Conference on
Computer Vision (ECCV), pages 417–435, 2022. 1

[4] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 4172–4182, 2023. 1

[5] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with CLIP latents. CoRR, 2022. 1

[6] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel
Cohen-Or, and Amit Haim Bermano. Human motion diffusion
model. In International Conference on Learning Representa-
tions (ICLR), 2023. 1

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages
5998–6008, 2017. 1

[8] Xiaozheng Zheng, Zhuo Su, Chao Wen, Zhou Xue, and Xiao-
jie Jin. Realistic full-body tracking from sparse observations
via joint-level modeling. In IEEE/CVF international confer-
ence on computer vision (ICCV), 2023. 1


