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A. Implementation Details

3D Landmark Transformer Architecture Fig. | presents
a more detailed figure of our 3D landmark transformer ar-
chitecture. 3D head pose and facial landmarks are estimated
via cross-attention and self-attention heads and MLP layers.

Loss Implementation Details In order to compute
occlusion-aware masks, m € {0,1}", used in Eq. 4, we
apply the predicted rotation matrix to a template of normal
vectors for each landmark, and threshold the dot product
with the forward vector to obtain the mask. We obtain our
normal template by selecting the landmarks on a face mesh,
and computing the normals at those locations. We set the
threshold so that products above 0.5 were considered visible,
while lowering this threshold to —0.1 for the nose bridge.
We found this conservative masking strategy reasonable in
our experiments.

Multi-view Camera Optimization In obtaining 3D
pseudo-labels for 3D-aware GAN-generated samples, we
perform a multi-view 3D landmark optimization over detec-
tions from renders of camera views, ¢; € C , represented by
(a, ) azimuth and elevation pairs. Fig. 2 illustrates all these
|C| = 41 sample views.

B. Evaluation Set Preparation

When comparing our model on the DAD3D-Heads [3]
dataset, we upsample the meshes to ensure that the mesh
is dense enough that the distance between vertices is much
smaller than the model’s inconsistencies.

Due to the enormous size of the Multiface [6] dataset, we
sample a subset for our evaluations. We selected 6 sequences:
Neutral Eyes Open, Relaxed Mouth Open, Open Lips Mouth
Stretch Nose Wrinkled, Mouth Nose Left, Mouth Open Jaw
Right Show Teeth, Suck Cheeks In, which include closed eyes,
wide mouth openings, and asymmetric facial deformations.
The data covers a wide range of cameras, and we discard
several in which the face is not visible, including cameras
numbered 400055, 400010, 400067, 400025, 400008, and
400070. To eliminate redundancy in the evaluation set, we
sample every 15 frames from the downloaded sequences.

C. Additional Experiments

Pseudo-labels Visualized In Fig. 3, we visualize 3D-
aware GAN samples, obtained via 3D pseudo-labeled IDE-
3D [4] latent renders, which are sampled from our aug-
mented camera space, C.

Additional Qualitative Results on CelebV-HQ Addi-
tional qualitative results on the CelebV-HQ [8] dataset are
shown in Fig. 4.

Evaluations on Additional DAD3D-Heads Categories
In Tab. 1, we report the DAD3D-Heads [3] evaluation results
for additional categories, including image quality, lighting,
gender, and age.

Loss Function Ablations We compare the loss function
used by our method, Laplacian Log Likelihood, with other
common loss functions, L1 and MSE, in Tab. 2. Our choice
yields the best results on our benchmark datasets.

Cross-Dataset Evaluations Our investigations into cross-
dataset evaluations reveal a notable limitation in model gen-
eralizability between datasets with differing labeling conven-
tions. We report cross-dataset evaluations in Tab. 3 on both
AFLW2000-3D [9] and the DAD3D-Heads [3] validation
set, comparing our method with methods trained on DAD3D-
Heads and 300WLP [9], noting that 300WLP’s compatible
evaluation set is the AFLW2000-3D dataset. We observe
that despite a global alignment in how landmarks are defined,
cross-dataset scores of every SOTA model are all worse than
the SOTA models of the compatible dataset. This is expected
due to the local definition bias w.r.t. a different dataset’s
landmark definition, which yields a consistent error. For
each dataset, our model achieves the best cross-dataset score.
The cross-dataset metrics do not disentangle the local defi-
nition bias from some notion of actual error with respect to
the model’s landmark definition. Intuitively, if our model’s
landmark definition were the midway interpolation between
the two dataset definitions, our model would incur half of the
error from local definition bias than that of the other models.
Hence, for fair comparisons, we compare against other meth-
ods using our proposed NMLC metric, which removes the
local definition bias from the evaluated error. Nevertheless,
cross-dataset evaluation remains a useful proxy for assessing
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Figure 1. 3D Landmark Transformer Architecture.
Quality Standard Light Gender Age
Model High | Low | True | False | female | male | undefined | child | young | middle aged | senior
SynergyNet [5] 227 | 3.70 | 2.55 3.29 2.35 2.78 6.15 2.44 2.74 2.95 2.67
3DDFA [9] 2.80 | 450 | 2.95 4.34 2.99 3.41 6.71 2.94 3.45 3.53 3.30
3DDFA+ [7] 270 | 4.04 | 2.88 3.79 2.81 3.21 5.70 2.82 3.22 3.26 3.14
3DDFAvV2 [2] 213 | 297 | 2.33 2.67 2.17 2.51 3.77 2.23 2.45 2.49 243
DAD-3DNetx [3] 1.84 | 248 | 1.99 2.26 1.87 2.15 2.88 1.83 2.05 2.16 1.96
DAD-3DNet+% [7] | 1.84 | 243 | 1.98 221 1.87 2.13 2.75 1.83 2.03 2.13 1.97
FAN3D [1] 1.99 | 322 | 2.21 291 2.08 2.51 4.46 2.02 2.32 2.67 2.36
Ours 1.68 2.28 1.81 2.07 1.72 1.95 2.72 1.70 1.90 1.95 1.85
Ours (Resnet50) 192 | 275 | 2.11 2.45 2.03 2.23 3.55 1.91 2.24 2.29 2.07
Ours (Resnet152) 1.81 | 247 | 1.96 2.23 1.87 2.08 3.05 1.80 2.07 2.09 1.98
Ours (MF only) 1.80 | 248 | 1.96 2.24 1.87 2.12 2.78 1.83 2.10 2.08 1.88
Ours (MV only) 201 | 2.85 | 2.17 2.60 2.10 2.33 3.75 2.03 2.36 2.35 221
Ours (100) 1.89 | 2.50 | 2.02 2.30 1.93 2.14 3.13 1.92 2.14 2.14 2.03
Ours (1k) 1.78 | 2.37 | 191 2.17 1.81 2.04 2.89 1.82 2.01 2.03 1.94

Table 1. SoTA evaluation (top) and ablations (bottom) on DAD-3DHeads [3], for additional categories. We report the NMLC for each model
when averaging across various facial regions and categories. {Model}% denotes the model was trained on the data samples used for our
evaluation.

Model | Multiface | DAD3D-Heads
Ours (LLL Loss) 2.52 1.68
Ours (L1 Loss) 2.82 2.08
Ours (MSE Loss) 3.01 2.49

Table 2. Ablation studies concerning the loss function used, where
Ours uses Laplacian Log Likelihood (LLL), evaluated on the full
set of landmarks from Multiface [6] and DAD3D-Heads [3]. We
report the NMLC for each model, when averaging across various
facial regions.

the global consistency of landmark definitions across models,
a presupposition integral to the NMLC metric.
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Figure 2. Masked Multiview 3D Landmark Optimization’s Camera “Rig”: Sample camera views used to perform the masked multiview
3D landmark optimization.



Figure 3. 3D-aware GAN Pseudo-labeled Samples. Our approach can faithfully reconstruct 3D landmarks under extreme 3D head poses,
and face outline landmarks are not affected by inherent GAN noise around face boundaries.

Model Training Set AFLW2000-3D-reannotated NME | DAD3D-Heads NME
FAN3D [1] 300WLP 2.85 3.83v
SynergyNet [5] 300WLP 2.65 3.46v
3DDFAv2 [2] 300WLP 3.33 3.10v
DAD-3DNet [3] DAD3D-Heads 5.10v 2.71
DAD-3DNet+ [7] | DAD3D-Heads+ 5.00v 2.71
Ours FaceLift 351V 2.78v

Table 3. Cross-dataset evaluation of NME on AFLW2000-3D-reannotated [9] and the validation set of DAD3D-Heads [3]. v'denotes that
the score is cross-dataset, meaning the training set definition is not compatible with the evaluation dataset and definition. We see that while
our model is the best on the cross-dataset comparisons for each dataset, compatible SOTA models yield better scores since they do not incur
the local definition bias of cross-dataset evaluation.



Figure 4. Additional Qualitative Results on CelebV-HQ [8] dataset. Here, the blue, green, and red axes represent Cartesian coordinates
and denote the forward, up, and right vectors, respectively. Our approach can faithfully reconstruct 3D landmarks under challenging 3D
head poses and harsh lighting.
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