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Supplementary Material

This supplementary material provides details on our

method, our experimental setup, and more quantitative

and qualitative results and comparisons. Please note that

we also provide a demonstration video alongside this

manuscript which showcases our view synthesis results. In

Sec. A, we describe our demonstration video. In Sec. B, we

provide further details on our benchmark data. In Sec. C, we

provide further details on our method. In Sec. D, we pro-

vide details on our experimental setup, conduct additional

experiments, and show more qualitative comparisons.

A. Demonstration Video

We provide a video of generated, novel trajectories show-

casing the versatility of our representation. We use camera

intrinsics with slightly lower resolution than in training to

generate a standard 16:9 HD video. The video complements

our evaluation by showing view angles of, e.g., dynamic

objects completely different from training which illustrates

more challenging scenarios than the evaluation views sam-

pled along the ego-vehicle trajectories.

In the first part of the video, we compare our method to

SUDS [58] on a novel, generated trajectory in the residen-

tial area of our proposed benchmark by rendering with a

single-sequence, latent vector. We also modulate the time

axis with the function f(x) = x3 that has a saddle point

around the origin (i.e. the middle of the video), thus creating

a slow-motion effect. Note that there are color artifacts (see

Fig. 8) in the input data that propagate into our reconstruc-

tion to a small degree which results in subtle pink artifacts

present in the renderings around the road markings.

In the second part of the video, we change the sequence

latent vectors to highlight their influence on the scene’s ap-

pearance. This results in a drastic appearance change in

the rendered views. Furthermore, we illustrate in this part

how varying dynamic objects can be assembled with the

sequence appearances, modulating the object’s appearance

according to the sequence. For this, we render the same

trajectory twice with different latent codes and dynamic ob-

jects. We keep the slow-motion effect in this part of the

video to showcase the continuous, consistent object trajec-

tories our method can render.

This shows the potential of our method for scenario gen-

eration, as we can shuffle objects and model varying envi-

ronment conditions suitable to real-world applications like

closed-loop simulation and mixed reality.

Figure 8. Color artifacts in Argoverse 2. We observe that color

artifacts are present in the input data, illustrating the complex phe-

nomena that need to be modeled when dealing with vehicle fleet

data under varying conditions.

B. Data Details

We describe further details on our benchmark data taken

from [61]. The LiDAR is sampled at 10Hz, and the 3D

bounding box annotations are annotated with the LiDAR,

i.e. they are also provided at 10Hz. The cameras are syn-

chronized with the LiDAR which yields seven images at

10Hz for each sequence. Each camera has a resolution of

1550 × 2048 pixels, where all cameras besides the front

camera are oriented in landscape mode. Each sequence in

Argoverse 2 [61] is approximately 15 seconds long.

Since the original data contains regions where the ego-

vehicle is visible in some of the cameras (cf. Fig. 7 of the

main paper), we annotate each camera view with an ego-

vehicle mask which we use in all experiments for all meth-

ods to constrain the ray sampling process. We release the

full data splits and the sequence alignment transformations

with our source code.

C. Method Details

In this section, we provide more details on our method.

Appearance and transient geometry embeddings. To

condition our sequence-level appearance and transient ge-

ometry matrices As and Gs on the time t, we use the 1D

basis function F(t) as mentioned in Sec. 4 of the main pa-

per. We use six as the number of frequencies of F(t) for

both appearance and transient geometry embeddings. The

resulting vectors ωt
s and ωo are in R

64. For ωt
s, we learn A

and G per sequence both in R
32×6·2+1, i.e. desired latent

vector size by output dimension of F(t). For ωo, we learn

separate geometry and appearance codes per object both in

R
32.

Transient density σG and color cG. In Eq. 8 of the pa-

per, we define the output of the transient geometry branch

which is used to calculate the final static color. We blend

the transient color cG with the predicted color cφ in Eq. 7



weighted by the densities σφ and σG analogous to Eq. 12:

σφ = σφ + σG , cφ =
σφ

σφ + σG
cφ +

σG

σφ + σG
cG. (S1)

Proposal network σprop. We align with [54] and use two

separate proposal networks, one for each proposal sampling

iteration. These proposal networks and our final static radi-

ance field φ have increasing hash table sizes, acting as a

coarse-to-fine representation of the scene geometry. In con-

trast to previous works [2, 54], we condition the proposal

networks on the sequence-specific geometry codes to ac-

count for varying transient geometry across sequences in

the proposal sampling stage.

Dynamic object radiance field ψ. For our dynamic object

radiance field ψ, we use separate shape and appearance la-

tent vectors that condition the radiance field. In particular,

we use a shape code at the network input that we concate-

nate with the input coordinate x and further an appearance

code that we concatenate with the direction d at the bot-

tleneck after density prediction. We concatenate sequence

and object appearance latent vectors to propagate sequence

appearance to the individual objects.

Space contraction. As mentioned in Sec. 4 of the main

paper, we follow [2, 54] and contract the unbounded scene

space into a unit cube. In particular, we use the following

function for space contraction:

χ(x) =

{

x, ||x||∞ ≤ 1

(2− 1

||x||∞
) x

||x||∞
, ||x||∞ > 1

.

Limitations. While our method sets a new state-of-the-

art for radiance field reconstruction in dynamic urban envi-

ronments under varying environmental conditions, the ex-

tremely challenging nature of the problem persists and fur-

ther research in this area is needed. For example, we can

much better represent highly dynamic, rigid objects such as

cars, vans, trucks, and buses. Still, objects with highly in-

tricate motions such as pedestrians or cyclists continue to

be a challenge. Another limitation stems from the inherent

problem of insufficient view coverage. For areas that were

not clearly visible to the ego-car, we find that the render-

ing quality is significantly lower. This is particularly pro-

nounced for dynamic objects since they are only present in

a single sequence. However, we note that this problem is

attenuated by the initialization of radiance field ψ with a se-

mantic prior. Overall, views farther away from the training

trajectories would constitute an interesting addition to the

evaluation setup. Yet, utilizing (partial) hold-out sequences

is not suitable for our task as these would contain distinct

transient geometry and dynamic objects, and possibly ap-

pearance unknown to the model. Thus, a different capturing

setup would be required which is outside the scope of our

work but is an interesting area for future research.
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Figure 9. Qualitative comparison of graph structure. We show

a qualitative illustration of our ablation study in Tab. 4. In partic-

ular, we show the results of our method without any sequence-

dependent latent vectors ω
t

s, with only the appearance vectors

AsF(t) and of our full method.

Split 3D Box Type PSNR ↑ SSIM ↑ LPIPS ↓

Single Seq.
GT 27.07 0.759 0.362

Prediction 26.71 0.756 0.365

Residential
GT 22.29 0.678 0.523

Prediction 21.28 0.667 0.538

Table 7. Ablation on 3D bounding boxes. We show results on a

single sequence of the residential area in our benchmark and the

full residential area. We train our method with either the provided

3D bounding box annotations or predictions acquired from an off-

the-shelf 3D tracker.

GT Render w. GT Render w. Pred.

Figure 10. Failure case of predicted 3D bounding boxes. While

the car in the foreground is well reconstructed with both ground

truth and predicted 3D bounding boxes, the van in the background

is rendered with incorrect orientation and is slightly too big.

Finally, while our method improves over naive pose opti-

mization, we note that this is a challenging problem and that

large pose errors are hard to correct during reconstruction.

We thus tackled this issue by pre-aligning the sequences

with our offline ICP procedure. We hope that our proposed

benchmark can spark further research that addresses these

issues.

D. Additional Experiments

We discuss further details on our experimental setup, addi-

tional experiments, and qualitative results.

Implementation details. We compute the scene bounds

from the LiDAR point cloud with a maximum distance of
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Figure 11. Qualitative comparison on VKITTI2. We observe

that SUDS [73] can render realistic training views, but cannot

properly recover the dynamic actors in the testing views. In con-

trast, our method shows no quality difference in rendering training

and novel testing views.

80 meters per sweep, i.e. we filter each point cloud so that

only points less than 80 meters from the ego-vehicle remain,

and use the ego-vehicle poses to register all point clouds in

the global world frame. With this global, world-frame point

cloud we compute the scene bounds. We use the following

loss weights for Eq. 13 of the main paper: λdist = 0.002,

λprop = 1.0, λdep = 0.05, and λentr = 0.0001. For Ldep,

we use the LiDAR measurements as ground truth. We only

take depth measurements at the time of the camera sensor

recording to ensure dynamic objects receive valid depth su-

pervision. Following previous works [21, 54], we optimize

the evaluation camera poses during the validation phase to

compensate for pose errors introduced by drifting geometry

through optimized training poses that would otherwise con-

taminate the view synthesis quality measurement. For this,

we use Lrgb only. For the depth map visualizations shown

in our qualitative results, we use linear scaling with a maxi-

mum depth of 82.5 meters and a minimum depth of 1 meter.

Rendering a 1920× 1080 image takes ∼16.4 seconds. The

training speed is 30K rays per second.

Baselines. We run SUDS [58] on our benchmark using

their official code release. Since it requires several addi-

tional inputs such as LiDAR depth and optical flow predic-

tions, we compute the optical flow of all sequences with

RAFT [72] following the experimental setup of SUDS [58]

on their City-1M benchmark. We align all other auxiliary

inputs such as depth with our method. We deactivate the

DINO feature distillation branch that is used in SUDS for

semantic reconstruction.

Influence of graph structure on view quality. In Fig. 9,

we show a qualitative comparison of our method without the

node latent codes in our graph, i.e. AsF(t) and GsF(t),
our method with only appearance codes AsF(t), and our

full method.

We observe that without any conditioning on the se-

quence s, there are strong artifacts, e.g. the smaller tree

highlighted in red is being rendered with leaves and the wall

of the building behind it has a significantly different color

than in the ground truth image. With the appearance em-

bedding only, the color problem is alleviated, but the tex-

ture of the wall is highly distorted since there is no way

for the model to distinguish between sequences where the

tree leaves are present and the wall is occluded and where

the wall is visible. In contrast, our full method recovers a

faithful rendering of the tree, the wall and also the windows

above.

3D bounding box predictions. While we follow previous

works [35, 67] and use provided 3D bounding boxes in our

experiments, we also report results using off-the-shelf al-

gorithms to predict the 3D bounding boxes of dynamic ob-

jects. In particular, we use an off-the-shelf LiDAR-based

3D object tracker [68, 71] to generate 3D bounding box

tracks. We use those tracks instead of the provided 3D

bounding box annotations. Note that neither the 3D object

detector nor the tracking algorithm is adjusted or fine-tuned

for the Argoverse 2 [61] dataset. We take the officially pro-

vided models trained on the nuScenes dataset [70]. This

dataset notably has different LiDAR sensor properties than

Argoverse 2.

In Tab. 7, we compare the results of our method with an-

notated 3D bounding boxes and with the predicted bound-

ing boxes. We train our method both on a single sequence,

i.e. the same sequence as in Tab. 5 of the main paper, and

the full residential area in our benchmark. When trained on

a single sequence, we observe that the difference in view

quality is marginal. Trained on the full residential split

of our benchmark, the gap becomes slightly larger while

the performance is still competitive. We analyze this more

closely in Fig. 10, where we observe some failure cases

when predicted boxes are inaccurate, e.g. when the orienta-

tion of an object is not correctly predicted and can also not

be recovered through our pose optimization. Still, the syn-

thesized views look realistic. Overall, this shows that our

approach can be scaled to large vehicle fleet data without the

need for manual data annotation simply through employing

off-the-shelf LiDAR 3D tracking algorithms without much

loss in realism.

Analysis of KITTI and VKITTI2 results. We observe a

large gap between previous state-of-the-art methods and our

method in terms of novel view synthesis quality in Tab. 2.

At the same time, our image reconstruction quality is su-

perior, but the gap is significantly smaller (cf. Tab. 3).

Motivated by this observation, we retrain SUDS [58] on

the VKITTI2 dataset and visualize its renderings for exam-

ple training and testing views alongside the results of our

method in Fig. 11. We observe that indeed the reconstruc-

tion quality of the training views is comparable for SUDS

and our method, but SUDS fails to recover dynamic ob-

jects in the testing view properly, while our method pro-



Lrgb Ldep Lentr PSNR ↑ SSIM ↑ LPIPS ↓ AbsRel ↓

✓ - - 22.22 0.675 0.524 0.321

✓ ✓ - 22.23 0.677 0.523 0.219

✓ - ✓ 22.20 0.676 0.523 0.333

✓ ✓ ✓ 22.29 0.678 0.523 0.218

Table 8. Loss term ablation. We report both the view and depth

quality of our model when ablating different loss terms.

Lrgb Lrgb, Ldep Lrgb, Ldep,Lentr

Figure 12. Free viewpoint renderings. Without Lentr, the sep-

aration between dynamic and static content is ambiguous (red).

Without Ldep, the traffic pole exhibits artifacts (green).

Figure 13. Object renderings. We illustrate object instances in

sunny conditions (top) and cloudy conditions (bottom).

duces high-quality renderings also for novel views. This

shows that our scene graph-based, high-level decomposi-

tion excels at representing scenes with highly dynamic ob-

jects while previous work struggles with this.

Ablation of Ldep, Lentr. In Tab. 8, we observe that while

depth and entropy losses have a limited effect on evaluation

view quality, the depth loss helps in improving geometry

accuracy (AbsRel). Intuitively, this improves view quality

farther from the training trajectory. The entropy loss en-

courages static and dynamic radiance separation, improving

object renderings and scene decomposition. We illustrate

these effects in Fig. 12.

Additional qualitative results of object-centric render-

ings. In Fig. 13, we show additional object-centric render-

ings conditioned on different scene appearances. In particu-

lar, we depict objects with more intricate textures, showing

the ability of ψ to generalize to a wide variety of object in-

stances. Note that the instance reconstruction quality varies

with the observed training views (cf. Fig. 13 right). Yet,

we note that our method models objects much better than

existing works.

Additional qualitative comparison. We include further

qualitative results of our method compared to the state-of-

the-art in Fig. 14. We observe that, similar to Fig, 7 of

the main paper, our method exhibits superior view synthesis

of dynamic areas and better captures seasonal variations in

terms of, for example, tree leaves. Further, the synthesized

views of our method are sharper compared to prior art, and

the depth maps are less noisy. We include qualitative re-

sults from both the residential and downtown areas of our

benchmark.
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Nerfacto + Emb. Nerfacto + Emb. + Time SUDS [58] Ours Ground Truth

Figure 14. Additional qualitative results on Argoverse 2. We illustrate four examples, where the upper two are from the residential area

and the lower two are from the downtown area in our benchmark. We observe that our method exhibits better view quality and cleaner

depth maps, particularly in dynamic areas.
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