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In this supplemental, we will detail additional details
on related work, training, ViT setup and experiment pro-
tocol that could not be included in the main paper for rea-
sons of brevity. We encourage the reader to also view
the electronic supplemental where we show animated ver-
sions of our method and the baselines. Our project page is
mfischer-ucl.github.io/nerf_analogies.

1. Extended Related Work

Inter-Surface Mappings, in pursuit of a similar goal as
Neural Radiance Field (NeRF) analogies, try to establish
relations between two shapes by comparing their geometric
[4, 12] or, more recently, semantic [1, 9] features. However,
most surface mapping methods either rely on manual an-
notations (i.e., are non-automatic) [12], are non-robust to
geometry imperfections [4], introduce discontinuous par-
titions [1, 8] or are limited to objects of the same topol-
ogy (e.g., genus-zero surfaces [9]) and hence are currently -
without further adaption - not suitable for the task of creat-
ing NeRF analogies, but might provide an interesting direc-
tion for future research.

2. Implementation Details

2.1. Training

We use the standard NeRF architecture presented in [7]:
a fully-connected MLP with 8 layers a 256 neurons, fol-
lowed by a single layer of 128 neurons and an output layer
activated by a Sigmoid function. We use the Adam opti-
mizer [5] with a learning rate of 1×10−4 and a batchsize of
512. We found that some of the correspondences that DiNO
produces are noisy, i.e., two points on the target geometry
might map to two different points in the source NeRF. We
alleviate this by training with the L1 loss, which encour-
ages sparsity. Our total loss thus is a weighted combination
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of the color loss Lc (cf. the main text) and the DoG loss LG

L = Lc + λLG,

where we set λ to be zero for the first 20,000 training itera-
tions , and then gradually fade in the edge-loss by increasing
λ up to 50. We train for a total of 60,000 iterations and are
able to create a NeRF analogy, including the feature extrac-
tion process on 100 source- and target-images, respectively,
in less than two hours on a single GPU.

2.2. ViT Setup

We use DiNO-ViT [3] with the vision transformer (ViT)-
8B backbone, with a standard patch size of 8, a stride of
4 pixels and increased resolution, leading to overlapping
patches and smoother feature maps. For our application,
we found it important to be able to produce dense corre-
spondences at pixel granularity, which is why we abstain
from using DiNO-v2, as it uses a larger patch size and hence
coarser feature granularity. To further increase the spatial
resolution of the feature maps, we query DiNO on verti-
cally and horizontally translated versions of the image (four
subsequent translations by one pixel in -x and -y direction,
respectively). For images of size 400p, this leads to per-
image feature maps of resolution 392, with 384 features per
pixel. We also experimented with diffusion (hyper-) fea-
tures [6] and tried replacing, fusing and concatenating them
to our DiNO-setup. This did not significantly improve the
correspondence quality, but doubled the required computa-
tions (both during feature extraction and cosine-similarity
computation), which is why we decided to stick with our
high-resolution DiNO features. Research on ViT features
has shown the positional bias to decrease with layer depth,
while the semantic information increases [2]. As we do not
necessarily expect semantically related regions to occupy
similar image positions, we thus use the output of the deep-
est (11th) attention layer, specifically, the key-component of
the attention maps, which has been shown to correlate well
with semantic similarity [2, 13].
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2.3. Evaluation Details

For the real-world scenes, we use NeRFStudio [14] and
train their Instant-NGP model on the scenes provided in the
main text. For all 2D methods that are lifted to 3D, we train
an Instant-NGP [10] network with standard hyperparame-
ters for 10,000 iterations, by which point convergence has
long been achieved. Our setup for all metrics and methods
is 200 images, sampled randomly from a sphere around the
object, and split into 100 images for training, 20 for valida-
tion and 80 for testing. We evaluate on unseen test-views.
For the CLIP direction consistency metric we rendered 80
images in a circular trajectory around the object, with a con-
stant elevation of 30◦. The metrics in Tab. 1 are averaged
across the set of the seven synthetic object pairs shown in
Fig. 6, which were also presented to the participants of the
user study. We show NeRF analogies on additional object
pairs in the electronic supplemental.

3. Additional Experiments
In addition to the experiments in the main manuscript,

we here investigate a range of other design decisions.
Firstly, we try replacing the compute-heavy DiNO-
descriptors by more lightweight SIFT features, computed
densely across the image with Kornia [11]. We re-run our
birdhouse test-case with SIFT- instead of DiNO-descriptors
and find that they do not perform well, presumably due to
SIFT not capturing semantic similarities.

Source Target DiNO descriptors SIFT descriptors

Figure 1. Comparison between DiNO- and SIFT-features.

Moreover, we note that our method can work on any
input or output modality that can represent color in 3D.
We thus repeat our experiments with signed distance fields
(SDFs) and transfer the appearance between two SDFs fit-
ted with NeuS2 [15].

Apples (SDF) Balls (SDF)

src: apples, trg: balls

src: balls, trg: apples

Figure 2. A semantic transfer between a bowl of apples and a set
of tennis balls, both encoded as SDFs.

Additionally, we create a NeRF analogy on semantically
unrelated, but similarly shaped objects. We transfer the ap-

pearance of an avocado onto an armchair of similar form
and see that, while not working perfectly, our method pro-
duces a plausible outcome.

Source Target

Figure 3. Transfer between semantically unrelated objects.
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