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1. Additional Material
1.1. Model

To foster a better understanding of the SplitterNet archi-
tecture and its tensor shapes, we provide an additional vi-
sualization of its baseline block in Fig. 1. One should keep
in mind that this figure only shows a two-step architecture
while the SplitterNet configuration in this paper uses a 4
step setup.

Figure 1. A simplified one-step view of the proposed architec-
ture. The full model architecture consists of 4 such encoding and
decoding steps, such that there are 16 middle blocks in total. The
convolutions are all using 3×3 kernels. The width (W), height (H),
and channel number of the output of a given component are writ-
ten below it. The components without explicit dimensions take the
same dimensions as the components below.

Within SplitterNet’s design, the introduction of a slic-
ing / splitting strategy and the creative use of skip connec-
tions mark significant changes away from traditional net-
work structures. This architecture is particularly engineered
to enhance image reconstruction capabilities by adopting a
more segmented approach to processing image data.

The key innovation within SplitterNet lies in its overall
architecture, where it differs from the conventional U-Net
by dividing each feature map into halves along the chan-
nel dimension in each encoder step. This division results in
two distinct tensors, effectively halving the original feature
map’s channels. This method enables separate processing
paths for each tensor, providing a nuanced feature analy-
sis that traditional, uniform processing methods might miss.
This architecture enhances the network’s capability to take
apart and reconstruct complex image details by examining
a broader range of input features.

Model PSNR SSIM Runtime, ms

Identity Mapping 30.86 0.672 -
Model (1) 37.50 0.877 17.5
Model (2) 37.85 0.883 -
Model (3) 38.00 0.883 56.1
SplitterNet 37.93 0.882 27.7

Table 1. PSNR, SSIM and runtimes results obtained on the MIDD
dataset for the ablation study of the SplitterNet. The runtime
was estimated on the Exynos 2200 Mali GPU on images of size
720×480 px. Model (1) refers to the SplitterNet without splitting
and using a constant channel number of 32. Model (2) refers to
the SplitterNet with additional Layernorm in each encoding and
decoding step. Model (3) refers to the SplitterNet without split-
ting and using an increasing channel number of 32 up to 512. The
runtime is halved when using the splitting operation compared to
not using it. Finally, the SplitterNet offers the best runtime to fi-
delity score tradeoff.

Further big changes included in the SplitterNet are its
skip connections. Unlike the typical usage, which primar-
ily aims at preserving spatial information, SplitterNet’s skip
connections serve a dual purpose. They not only maintain
spatial continuity across the network but also bring back to-
gether features processed along parallel encoder paths dur-
ing the decoding phase. By merging these split tensors
with upscaled feature maps, the network ensures a thorough
reintegration of spatial and feature details lost in downsam-
pling. This mechanism significantly contributes to the im-
proved reconstruction of images, making the most of the
split-feature approach.

1.1.1 Ablation Study SplitterNet

A simple ablation study is provided as the SplitterNet in-
cludes a novel model architecture. We want to find the im-
pact that splitting the tensors for each encoding step creates
compared to two models where we do not use splitting. The
first model uses a constant channel dimension, as the ten-
sors inside the SplitterNet never exceed the channel number
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Figure 2. From left to right: processed raw photo, image obtained with S23 Ultra’s ISP, and the photo denoised with the SplitterNet model.
The Samsung ISP does not remove noise efficiently in flat regions and does not keep as many details as our SplitterNet.

of 32. The second model uses increasing channel dimen-
sions, as the sum of channel numbers in each encoding step
is increased. Furthermore, an analysis using Layernorm is
presented as it has shown to be valuable in other denois-
ing networks. It should be also noted that the LayerNorm
op is currently not supported by current mobile ML frame-
works, thus the resulting architecture would not be able to
run on mobile devices and thus the runtime is not reported.
In Tab. 1 we can see that:

1. The first Model offers the fastest runtime, as its chan-
nel number is constant, and fewer operations need to
be performed compared to the SplitterNet. This comes
with a price, the PSNR and SSIM scores are both sig-

nificantly lower.

2. The second model performs very similarly to the Split-
terNet without LayerNorm. These results are expected
since LayerNorm usually helps in tasks where global
image changes are introduced.

3. The third model offers slightly better PSNR and SSIM
scores but a doubling of the runtime, which corre-
sponds directly to the doubled mathematical complex-
ity of not using the splitting operation.

Following the observations, it can be concluded that the pro-
posed architecture offers superior performance when taking
into account runtime as well as PSNR and SSIM scores.



Figure 3. Visual results for the SplitterNet trained on the SIDD dataset for 50 epochs instead of 10 (top left). Still, the blur is not reduced
and the scores are not significantly higher.

Figure 4. An example of using SplitterNet trained on the SIDD for prediction (top row). Again, a strong blur is introduced to the resulting
images. For comparison, one can see the denoising performance of the SplitterNet trained on the MIDD on the same image in Fig. 6.



Figure 5. A comparison of mobile denoising model performance on a sample image from the independent DPreview dataset. SplitterNet
performs similarly to the Megvii network, while the NOAHTCV solution offers the worst performance. A simple U-Net model offers a
strong denoising performance, with a better line separation than the Megvii model, but weaker noise removal overall.

1.2. Visual Comparison Samsung S23 Ultra ISP

Comparing our denoising model with image denois-
ing capabilities of current mobile Image Signal Processors
(ISPs) presents an intriguing analysis. However, it is im-
portant to remember that these ISPs perform a wide range
of other image enhancement techniques, therefore a direct
comparison may not be entirely meaningful. Sample re-
sults for the Samsung S23 Ultra camera are demonstrated
in Fig. 2. We should note that conducting a numerical per-
formance comparison is unfortunately not possible in this
case as image results obtained with different ISPs differ sig-
nificantly in texture and color rendition (which affects the
PSNR and SSIM scores).

1.3. Training on SIDD

From the dataset comparison in the results section, it was
shown that the SplitterNet trained on the SIDD performs
poorly and the resulting images are blurry. One could argue
that the SplitterNet should be trained for more epochs on

SIDD to provide sharper images. In Fig. 4, one can see the
results for SplitterNet being trained for 50 epochs on SIDD.
The resulting predictions are not significantly sharper and
thus the blur is not due to a shorter training time.

1.4. Visual Model Performance

In Fig. 5, one can see the performance of different mod-
els on a sample DPreview image. All models were trained
on the MIDD dataset. The Megvii network achieves the
cleanest visual output, closely followed by a simple U-
Net and SplitterNet. The NOAHTCV network introduces
a strong blurring. One can conclude that the performance
of the SplitterNet is closer to the Megvii network than to
the NOAHTCV model.

1.5. Visual Examples SplitterNet

To further analyze and show the performance of the
SplitterNet on real-world scenarios from our MIDD dataset,
we provide additional examples of different lighting condi-
tions and scenes in Fig. 6 and Fig. 7.



Figure 6. Qualitative evaluation of images denoised using the SplitterNet trained on the MIDD. The first and third rows, denoised images
obtained with our model are presented as well as their PSNR scores. The original noisy input images are shown in the second and fourth
rows. The first two rows show an indoor scene with strong noise. The model extracts the noise very well on the wooden surface, as seen in
the fourth column, but introduces some artifacts when denoising the letters on the book surface. The second scene shows a daylight image
with very little noise. Our model does not over-smooth edges and only minor changes are made by the model.



Figure 7. Two more images with strong noise from an indoor and an outdoor scene are shown. In both situations, the model performs well
and extracts noise efficiently. On the top right image, a defective pixel is seen, which does not get extracted, which is the intended behavior.
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