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1. More Experiments

Here, we report results of more experiments. These exper-
iments are conducted on the THUMOS14 dataset, unless
otherwise specified.
Closer comparison against state-of-the-art baseline. We
also closely compare the performance between our method
and the state-of-the-art baseline. Specifically, we evaluate
the quality of our temporal boundary outputs (i.e., starting
point and ending point AD images) as well as our action-
class outputs (i.e., action-class AD image), by replacing
the corresponding components of a current state-of-the-art
baseline [10] with them. We compare against the following
two baselines: 1) Baseline w/ our temporal boundary out-
puts where we obtain the temporal boundaries (i.e., starting
and ending points) with our method, and obtain the action-
class predictions with the baseline method. 2) Baseline
w/ our action-class outputs where we obtain the temporal
boundaries (i.e., starting and ending points) with the base-
line method, and obtain the action-class predictions with our
method. As shown by the reported results in Tab. 1, our
method outperforms the baselines, showing that our method
is able to effectively generate both high-quality temporal
boundary and action-class AD images which demonstrate
good performance when compared to the state-of-the-art
baseline.

Table 1. Evaluation of temporal boundary and action-class outputs
against a state-of-the-art baseline [10].

Setting 0.3 0.5 0.7 Avg
Baseline [10] 83.6 72.9 47.4 69.3
Baseline w/ our temporal boundary outputs 84.1 74.9 47.7 69.8
Baseline w/ our action-class outputs 84.0 74.6 47.6 69.9
Ours 84.9 76.5 48.0 70.8

Impact of number of samples M . We explore varying the
hyperparameter M , with results shown in Tab. 2. We find
that performance improves when we increase M , until M
reaches 10, where the improvement tapers off. Thus, we set
M = 10.
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Table 2. Ablation study for number of samples M .

M 0.3 0.5 0.7 Avg
1 82.0 73.7 45.2 67.2
10 84.9 76.5 48.0 70.8
20 85.0 75.2 47.9 70.7

Impact of depth of diffusion network L. We also explore
changing the depth (L) of the diffusion network with the
Row-Column Transformer Architecture and report the re-
sults in Tab. 3. We find that performance improves when
we increase L, until L reaches 3, where the improvements
become minimal when we increase it further. Thus, we set
L = 3.

Table 3. Ablation study for depth of diffusion model (L).

Layers 0.3 0.5 0.7 Avg
1 83.2 75.0 47.1 69.2
3 84.9 76.5 48.0 70.8
5 84.0 76.1 48.2 70.3

Impact of number of diffusion steps T . To further in-
vestigate the characteristics of our diffusion process, we
experiment with different diffusion step numbers (T ) and
report the results in Tab. 4. We observe that performance
improves significantly when we increase T , and tapers off
when T > 50. Thus, we set T = 50 to achieve a good result
while maintaining efficiency.

Table 4. Ablation study for number of sampling steps T .

T 0.3 0.5 0.7 Avg
10 81.9 74.3 46.5 68.1
30 83.7 75.1 47.0 69.7
50 84.9 76.5 48.0 70.8
70 84.5 76.3 48.0 70.6

Impact of number of trials K. We further investigate the
impact of the “number of trials” hyperparameter K of the
Multinomial distribution and report the results in Tab. 5. We
observe that performance improves when we increase K,
and tapers off when K > 200. Thus, we set K = 200.
Impact of diffusion process. We further evaluate the effi-
cacy of employing a diffusion process by comparing against
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Table 5. Ablation study for hyperparameter K.

K 0.3 0.5 0.7 Avg
100 82.5 75.2 45.0 67.8
200 84.9 76.5 48.0 70.8
400 84.5 76.4 47.9 70.2
600 84.6 76.3 47.8 70.4

two baseline models: (1) Baseline A: We use the same net-
work as our diffusion model but we do not perform diffusion
here, and instead obtain the predictions in a single step. (2)
Baseline B: This baseline is similar to Baseline A, except
that the network is stacked multiple times to approximate
the computational complexity of our method. We report
the results of the baselines and our method in Tab. 6. The
performance of both baselines are much worse than ours,
which demonstrates the efficacy of diffusion.

Table 6. Ablation study for diffusion process.
Method 0.3 0.5 0.7 Avg
Baseline A 79.2 66.4 43.1 64.9
Baseline B 78.7 65.1 43.8 65.1
Ours 84.9 76.5 48.0 70.8

Impact of diffusion’s properties. We investigate the im-
portance of the two properties mentioned in Sec. 3.2 of the
main paper. Specifically, we compare against a baseline (w/o
Diffusion Properties) that does not make use of Property 2
and Property 3 to facilitate training, and has to add noise in
a step-by-step manner to generate every single noisy sample.
Training times of each epoch under each setting are reported
in Tab. 7. We find that the training efficiency drops by a lot
without these properties, showing their importance.

Table 7. Ablation study of diffusion’s properties.
Method Training time (hr)
w/o Diffusion Properties 2.3
w/ Diffusion Properties 0.3

Comparison between different backbones. In our experi-
ments, we follow existing works [10, 14] to use an off-the-
shelf R(2+1)D [12] models to extract video features fST

for ActivityNet-1.3. To fairly compare with other works
that use the I3D [2] backbone, here we run experiments on
ActivityNet-1.3 using the I3D backbone as well. As reported
in Tab. 8, we find that our performance is roughly the same
and still achieves state-of-the-art results, outperforming other
methods that use the I3D backbone (as reported in Tab. 1 of
the main paper).

Table 8. Comparison between different backbones on ActivityNet-
1.3.

Feature 0.5 0.75 0.95 Avg
I3D 56.1 38.2 8.7 37.7
R(2+1)D 56.9 38.9 9.1 38.3

Visualization of challenging examples. Here, we visualize
the results of our method on some challenging video exam-
ples on THUMOS14 dataset (e.g., with cluttered background
or complex motions) in Fig. 1. Specifically, we visualize
the predicted probability of the ground truth action-class
and the predicted probability of having a starting point and
ending point across several selected frames for a few video
clips. We observe that our model outputs high probability
scores for the correct action-class during the action, while
the probability scores for the starting and ending times also
peak at the start and end of the actions respectively. This
shows the efficacy of our model in producing high-accuracy
predictions for action-class and temporal boundary predic-
tions. Moreover, we find that our method performs well
even under challenging conditions, such as complex mo-
tions and a cluttered background, as shown in the top and
bottom examples in Fig. 1 respectively. This suggests that
there is potential for future works to explore our method in
fine-grained recognition settings [6] as well.

2. More Details

2.1. More Network Details

The main structure of our diffusion network d has been
described in Sec. 3.3 of the main paper, where d mainly
consists of L stacks of Row-Column Blocks. Below, we
describe more details regarding the network architecture.

When extracting the features from the pre-trained encoder,
we first extract features fv ∈ RN×F , where N is the number
of frames and F is the feature size of the extracted features
(e.g., F = 2048 for I3D). Then, two linear+relu layers are
applied followed by a max pooling layer, such that we obtain
the spatio-temporal features fST ∈ RN×CST , where CST is
set to 128.

Next, we also generate a diffusion step embedding ft ∈
RN×1 via the sinusoidal function to represent the t-th dif-
fusion step. More precisely, at each even (2i) index of
ft, we set the element ft[2i] to sin(t/100002i/N ), while
at each odd (2i+ 1) index, we set the element ft[2i+ 1] to
cos(t/100002i/N ).

For our MHSA layers, we set the number of self-attention
heads to 8. Our Temporal Convolutions are set to have 4
channels. In both parts of the Row-Column Block, we have
a 2-layer MLP. In both cases, the inputs and outputs of the
2-layer MLP have shape N × (C + CST + 1). Specifi-
cally, in the first part, the MLP encodes information across
columns while in the second part, the MLP encodes informa-
tion across rows. Also note that, when passing through the
MLP layers in both parts, the shape of the hidden features
remain unchanged.
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Figure 1. Visualization of action detection results. (Top) A video clip of a “Soccer Penalty” action, which is a complex action that consists
of several different motions. Our model successfully assigns a high probability for the “Soccer Penalty” class during the action, and assigns
high probabilities to the correct starting and ending points (as indicated by the vertical dotted lines). (Bottom) A video clip of a “Clean and
Jerk” action, which is captured amidst a cluttered background, making it rather challenging for models to produce accurate predictions. We
find that, in this challenging scenario, our model still produces rather accurate action-class predictions and starting/ending point predictions,
showing the efficacy of our method.

2.2. Network Architecture for Combined Process-
ing

We perform combined processing for generating the three
AD images simultaneously, where we stitch the images to-
gether into a combined image and perform a combined pro-

cessing for all three AD images. Specifically, we concatenate
the three AD images {xa

t , x
s
t , x

e
t} horizontally to obtain the

combined image as xcombined
t ∈ RN×(C+4), where each

row consists of three discrete distributions. Then, to process
the stitched image with the diffusion network, we modify
the column dimensionality, i.e., by adding 4 columns to
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Figure 2. Illustration of the Row-Column Block with combined processing of all three AD images (xa, xs, xe), where the combined input
xC is fed into the block. Although the components and processes of the Row-Column Block for combined processing are mostly similar to
individual processing, there are some modifications in terms of the dimensions. For instance, in the first part of the Row-Column Block,
the learnable positional embeddings (PE) are adjusted to handle (C + 4) + CST + 1 columns, and the MHSA is also performed across
(C + 4) + CST + 1 columns. Furthermore, in the second part of the Row-Column Block, the learnable PE and MHSA are adjusted to
handle tokens (rows) with a size of (C + 4) + CST + 1. The shapes of MLP weights in both parts are also adjusted accordingly.
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Figure 3. Illustration of how the three AD images (xa, xs, xe)
are concatenated with spatio-temporal features fST and diffusion
step embedding ft to form the combined input xC to the diffusion
network for combined processing. In this illustration, each AD
image is represented by a rectangular block, where the number of
columns in each AD image are indicated on top of the AD images.
The resulting combined input to the diffusion network (xC) has
shape N × (C + 4) + CST + 1.

the Row-Column Block design. Note that, even though the
processing by the network is combined, the three discrete
distributions in each row (from three different AD images)
are still handled separately in our diffusion process, where
the processing of each distribution follows Sec. 3.2 of the
main paper. An overview of the combined processing with
our Row-Column Block is shown in Fig. 2. We provide more
details below.

Firstly, similar to how individual AD images are pro-
cessed, the combined image xcombined

t ∈ RN×(C+4) are
concatenated with spatio-temporal features fST ∈ RN×CST

and diffusion step embedding ft ∈ RN×CST , to form the
input xC ∈ RN×(C+4)+CST+1. We remark that the fST and
ft in this combined image remain unchanged as compared
to the individual processing. We visualize this in Fig. 3.

Then, in the first part of the Row-Column Block, we
treat each column of the input xC ∈ RN×(C+4)+CST+1

as a token, thus obtaining (C + 4) + CST + 1 tokens of
length N . A learnable positional embedding is added to
each token to encode the positional information, and then
MHSA is performed among all tokens, where the number of
self-attention heads is kept at 8. We also reshape the weights
of the last 2 MLP layers accordingly, to have inputs and

outputs of shape N × (C + 4) + CST + 1.

In the second part of the Row-Column Block, we first
apply a 1 × 3 Temporal Convolution as usual. Then, we
treat each row as a feature, obtaining N tokens of length
(C + 4) + CST + 1. Afterwards, we add the learnable
positional embedding to each token and perform MHSA
between them, where the weights are adjusted to handle
tokens of length (C + 4) + CST + 1. We also reshape the
weights of the last 2 MLP layers accordingly, to have inputs
and outputs of shape N × (C + 4) + CST + 1.

We remark that some parts of the network are shared
between all three types of AD images, while some parts are
not shared. Specifically, all three AD images share the set
of network parameters for the weights in MHSA and TC
layers. However, the positional embeddings of the tokens
are all learned separately, so the tokens of each AD image
can learn unique positional embeddings for themselves.

2.3. More Implementation Details

For the diffusion process, we follow DDIM [11] to define the
sequence {β1, ..., βT } by linearly interpolating from 1e− 4
to 2e − 2, i.e., β1 = 1e − 4 and βT = 2e − 2. Then, as
mentioned in the main paper, we define αt and ᾱt based
on βt, according to the following equations: αt = 1 − βt

and ᾱt =
∏t

k=1 αk. At inference time, we also adopt the
acceleration technique from DDIM [11], which allows us to
skip a proportion of diffusion steps.

To facilitate training, following previous works [7, 8], we
consider a small window of frames around the labelled start-
ing/ending points as positives. Specifically, we compute this
small window as 1

10 of the length of the action instance. Fur-
thermore, to balance between the positives and negatives for
the starting/ending point prediction, we follow existing work
[7] by setting threshold IoP as 0.5, where IoP is defined
as the overlap ratio with ground truth proportional to the
duration of the action instances. To be more specific, when
IoP > 0.5, the action instances are considered positive;
otherwise, they will be considered negative.



3. More Proofs and Analysis

3.1. Details of Multinomial Distribution

In Sec. 3.2 of the main paper, we describe our forward diffu-
sion process, where the random noise vt added at each step is
sampled from a Multinomial distribution. Here, we formally
define the Multinomial distribution and provide more details.

We denote the Multinomial distribution as
Multinomial(K,p), where K is a parameter that
represents the number of total trials and p represents a
vector of probabilities of length C which add up to 1.
Intuitively, the Multinomial distribution describes the
distribution of counts over the C classes, when classes are
picked K times with replacement where the probability of
picking each class is represented by an element in p. The
likelihood function in terms of x, where x is a vector that
represents non-negative integer counts for all classes, is
defined as follows:

Multinomial(x;K,p) =
Γ(K + 1)∏C

c=1 Γ(xc + 1)

C∏
c=1

pxc
c (1)

Note that, the elements of the vector x sum to K. In the
case where we compute the Multinomial likelihood of vt
instead, where the elements sum to 1, we can easily perform
substitution in the probability mass function (as denoted by
the subscript Kvt) as follows:

MultinomialKvt (vt;K,p) =
Γ(K + 1)∏C

c=1 Γ(Kvt,c + 1)

C∏
c=1

p
Kvt,c
c

(2)

For the sake of simplicity, we use the formulation of x in
Eq. 1 for the rest of this section (where sum of elements in
x is K), but the statements and results apply to vts as well.
At the same time, we use MultinomialK(K,p) to denote
sampling vt from the Multinomial in Eq. 2, i.e., sampling
from Multinomial(K,p) and dividing the output counts
by K, in order to let all elements of vt sum to 1.

3.2. Analysis of t forward steps

Next, we show how we can obtain Eq. 4 of the main paper
from the t-step forward process as shown in Eq. 3 of the
main paper.

For convenience, we repeat Eq. 3 of the main paper here:

zt = ᾱtz0+(

t∏
τ=2

ατ )β1v1+(

t∏
τ=3

ατ )β2v2+....+βtvt (3)

We show how we can approximately obtain the simplified
likelihood of the t-step forward process, ie., Eq. 4 of the
main paper, as follows:

q(zt|z0) = MultinomialBtK(zt−ᾱtz0)
1−ᾱt

(zt;BtK,
1

C
1, z0)

(4)
where the Multinomial’s subscript is the substitution formula
(BtK(zt−ᾱtz0)

1−ᾱt
) in terms of zt which is used for formulating

the likelihood function (i.e., similar to the substitution in
Eq. 2), where BtK(zt−ᾱtz0)

1−ᾱt
in terms of zt follows the Multi-

nomial distribution.
Next, in order to simplify the sum from Eq. 3, we

first show that the sum of samples from Multinomials
with the same p will produce a sample from another
Multinomial. Specifically, if m = x1 + x2, and x1 ∼
Multinomial(K1,p), x2 ∼ Multinomial(K2,p), then
m ∼ Multinomial(K1 +K2,p). To show this, we use the
characteristic functions of the Multinomial distributions. We
note that the characteristic function (CF) of the Multinomial
distribution is:

CFMultinomial(x;K,p)(t) = E[eitx] =
( C∑

j=1

pje
itj

)K

(5)
where i2 = −1, and t is an input argument which is a vector
of length C.

Since the sum of two random variables is equals to the
product of their characteristic functions, we get:

CFx1+x2
(t) = CFx1

(t)CFx2
(t) (6)

=

( C∑
j=1

pje
itj

)K1
( C∑

j=1

pje
itj

)K2

(7)

=

( C∑
j=1

pje
itj

)K1+K2

(8)

= CFMultinomial(x;K1+K2,p)(t), (9)

which shows that the resulting sample is from the
Multinomial(K1 +K2,p) distribution.

In our case specifically, we also need to add scaling fac-
tors (βt) that re-weigh the samples from the Multinomial
distribution at each t-th step. Using the proof above, we can
observe that, when samples from Multinomials are added,
they remain a Multinomial. However, when we add a lin-
ear combination of samples with different βt, it becomes
more difficult to exactly quantify the resulting likelihood.
To derive a good approximation for the likelihood of ht

(and therefore q(zt|z0)), we introduce Lemma 1, which is
described as follows:

Lemma 1. If ht = (
∏t

τ=2 ατ )β1x1 + (
∏t

τ=3 ατ )β2x2 +
.... + βtxt, where xτ ∼ Multinomial(K, 1

C1) for



τ ∈ [1, ..., t] and xτ are all independently sampled,
then the following approximately holds: Bt

1−ᾱt
ht ∼

Multinomial(BtK, 1
C1) where ᾱt =

∏t
τ=1 ατ and Bt =

(1−ᾱt)
2(

(
∏t

τ=2 ατ )2β2
1+(

∏t
τ=3 ατ )2β2

2+....+β2
t

)
Proof. To derive the approximation, we make use of the
following property of multinomial distributions: as K
becomes large, the likelihood over each dimension can
be approximated with a Gaussian. In our case, with a
Multinomial(K, 1

C1), the approximating Gaussian has
mean and variance parameters of K

C and K
C (1− 1

C ). Thus,
when we set our K to be large, the likelihood over each
dimension of xτ is approximated as: N (KC , K

C (1− 1
C )).

Furthermore, the convolution of two independent Gaus-
sians is a Gaussian with the expectation and variance be-
ing the sum of the constituent Gaussians, i.e., N (µ1,V1) ∗
N (µ2,V2) = N (µ1 + µ2,V1 + V2). Thus, by approximat-
ing the likelihood of each multinomial with a Gaussian, we
can find the parameters of ht through computing the mean
and variance of each constituent xτ and summing them up.
Therefore, the sum of (

∏t
τ=2 ατ )β1x1 +(

∏t
τ=3 ατ )β2x2 +

.... + βtxt at the t-th step for any given dimension can be
approximated to be a Gaussian with mean and variance as:

E[ht] = (

t∏
τ=2

ατ )β1µv1 + (

t∏
τ=3

ατ )β2µv2 + ....+ βtµvt (10)

=
(
(

t∏
τ=2

ατ )β1 + (

t∏
τ=3

ατ )β2 + ....+ βt
)K
C

(11)

= (1− ᾱt)
K

C
(12)

V[ht] = (

t∏
τ=2

ατ )β1Vv1 + (

t∏
τ=3

ατ )β2Vv2 + ....+ βtVvt (13)

=
(
(

t∏
τ=2

ατ )
2β2

1 + (

t∏
τ=3

ατ )
2β2

2 + ....+ β2
t

)K
C

(1−
1

C
)

(14)

= γt
K

C
(1−

1

C
) (15)

where γt =
(
(
∏t

τ=2 ατ )
2β2

1+(
∏t

τ=3 ατ )
2β2

2+ ....+β2
t

)
.

Next we aim to find the parameters of a Multinomial, of
which the likelihood can be approximated by a Gaussian
with the expectation and variance according to Eq. 12 and
Eq. 15 above. Specifically, if we draw a sample yt from
the Multinomial, the expectation and variance of yt should
follow Eq. 12 and Eq. 15, i.e., such that it is approximately
drawn from a Gaussian with those parameters.

Firstly, it is clear that the probability parameters should
be kept constant at 1

C1 for the resulting Multinomial as well.
Furthermore, it is straightforward to design the expectation
to be equal to Eq. 12, where we can scale the original trial

parameter K by a constant Bt and scale the sample yt further
by 1

Bt
× (1 − ᾱt), which will ensure that the expectations

are equal.
Then, it is simple to check that expectation of (1−ᾱt)

Bt
yt,

where yt ∼ Multinomial(BtK, 1
C1), is as follows:

E[
(1− ᾱt)

Bt
yt] =

(1− ᾱt)

Bt
E[yt] (16)

=
(1− ᾱt)

Bt

BtK

C
1 (17)

= (1− ᾱt)
K

C
1 (18)

which is equal to Eq. 12 as expected.
At the same time, we can solve for the value of Bt by

expanding the variance of (1−ᾱt)
Bt

yt as follows:

V[
(1− ᾱt)

Bt
yt] =

(1− ᾱt)
2

B2
t

V[yt] (19)

=
(1− ᾱt)

2

B2
t

BtK

C
1(1− 1

C
1) (20)

=
(1− ᾱt)

2

Bt

K

C
1(1− 1

C
1) (21)

Therefore, by equating Eq. 15 and Eq. 21, we find that we
can approximate the distribution of ht with (1−ᾱt)

Bt
yt by

setting Bt =
(1−ᾱt)

2

γt
, where we check that the variance of

each element of (1−ᾱt)
Bt

yt is as follows:

(1− ᾱt)
2

Bt

K

C
(1− 1

C
) = (1− ᾱt)

2 γt
(1− ᾱt)2

K

C
(1− 1

C
)

(22)

= γt
K

C
(1− 1

C
) (23)

which is equal to what we obtain in Eq. 15.
We further remark that the same calculations for the vari-

ance can be extended for the covariance as well, to show
that the covariance between elements of ht and (1−ᾱt)

Bt
yt

are approximately equal when Bt = (1−ᾱt)
2

γt
. In short,

for all i ̸= j, Cov(ht,i, ht,j) = −γtK
1
C2 , and similarly,

Cov( (1−ᾱt)
Bt

yt,i,
(1−ᾱt)

Bt
yt,j) = − (1−ᾱt)

2

Bt
K 1

C2 , and the val-

ues are equal when Bt =
(1−ᾱt)

2

γt
.

Note that, if BtK is not an integer, we can round it off to
the nearest integer. Furthermore, BtK > K since Bt > 1
for all t.

In summary, using Lemma 1, the following approximately
holds:



Bt

(1− ᾱt)
ht ∼ Multinomial(BtK,

1

C
1) (24)

where ht = (
∏t

k=2 αk)β1x1+(
∏t

k=3 αk)β2x2+....+βtxt.
Overall, this allows us to formulate Eq. 4 as follows:

q(zt|z0) = MultinomialBtK(zt−ᾱtz0)
1−ᾱt

(zt;BtK,
1

C
1, z0)

(25)

3.3. Modeling the forward diffusion steps as a
Markov Chain

In this subsection, we show that the transitions using Eq. 1
of the main paper can be modelled as a discrete-time Markov
chain. Specifically, each forward step can be treated as a tran-
sition in a Markov chain. In other words, we can take Eq. 1
of the main paper, and formulate it as a transition matrix Pt

of a Markov chain, representing the transition matrix at the
t-th step. Pt is a matrix of size C × C, where the element
at the i-th row and j-th column indicates the probability of
the i-th state transitioning to the j-th state. Directly using
Eq. 1 of the main paper, we can set the elements of transition
matrix Pt to be:

1− βt + βtvt,i for each i-th diagonal entry, (26)
βtvt,j for each i, j-th non-diagonal entry. (27)

where Pt is a matrix of size C ×C, and vt,i refers to the i-th
entry of the vector vt, which is a randomized result from the
Multinomial distribution.

We can quickly verify this transition probability matrix by
computing zt−1Pt, which can give us Eq. 1 of the main paper.
Using the transition probabilities in Eq. 26 and Eq. 27, the
probability value of j-th class at the t-th step is as follows:

zt,j = zt−1,j(1− βt + βtvt,j) +
∑

c∈{1,....,C}\j

zt−1,cβtvt,j

(28)

= (1− βt)zt−1,j + βt

∑
c∈{1,....,C}

zt−1,cvt,j (29)

= (1− βt)zt−1,j + βtvt,j (30)

Since the above derivations hold for all classes, this ver-
ifies the Markov chain is equivalent to Eq. 1 of the main
paper.

Using the Markov chain, it is also easy to derive Eq. 3 of
the main paper via the recurrence relation.

3.4. More analysis of the forward process posterior

Here, we derive the formulation in Eq. 5 of the main paper.

Firstly, from Bayes’ Theorem, we have:

q(zt−1|zt, z0) =
q(zt|zt−1, z0) · q(zt−1|z0)

q(zt|z0)
(31)

=
q(zt|zt−1) · q(zt−1|z0)

q(zt|z0)
(32)

=
q(zt|zt−1) · q(zt−1|z0)∑

zt−1
q(zt|zt−1) · q(zt−1|z0)

(33)

where the second step is due to the Markov property, i.e.,
q(zt|zt−1, z0) = q(zt|zt−1). Note that we verify that the
forward process is a Markov chain in Sec. 3.3.

From Eq. 4 of the main paper, we can get:

q(zt−1|z0) = MultinomialBt−1K(zt−1−ᾱt−1z0)

1−ᾱt−1

(zt−1;Bt−1K,
1

C
1, z0)

(34)

We can also get the following:

q(zt|zt−1) = q(zt−1|zt) = MultinomialK(zt−(1−βt)zt−1)

βt

(zt−1;K,
1

C
1, zt),

(35)

Substituting in the values, we have:

q(zt−1|zt, z0) =
(
MultinomialK(zt−(1−βt)zt−1)

βt

(zt−1;K,
1

C
1, zt)

)

·
(
MultinomialBt−1K(zt−1−ᾱt−1z0)

1−ᾱt−1

(zt−1;Bt−1K,
1

C
1, z0)

)

·
( ∑

zt−1

[(
MultinomialK(zt−(1−βt)zt−1)

βt

(zt−1;K,
1

C
1, zt)

)

·
(
MultinomialBt−1K(zt−1−ᾱt−1z0)

1−ᾱt−1

(zt−1;Bt−1K,
1

C
1, z0)

)])−1

(36)

=
1

σt

(
MultinomialK(zt−(1−βt)zt−1)

βt

(zt−1;K,
1

C
1, zt)

)

·
(
MultinomialBt−1K(zt−1−ᾱt−1z0)

1−ᾱt−1

(zt−1;Bt−1K,
1

C
1, z0)

)
(37)

where σt =
∑

zt−1

[(
MultinomialK(zt−(1−βt)zt−1)

βt

(zt−1;K, 1
C

1, zt)
)
·

(
MultinomialBt−1K(zt−1−ᾱt−1z0)

1−ᾱt−1

(zt−1;Bt−1K, 1
C

1, z0)
)]. We note

that, the exact value of σt does not matter in practice since
it is constant for all observed zt−1, hence we fix it as a
hyperparameter for better efficiency.

3.5. More discussion on diffusion models

Diffusion models [1, 3, 5, 11] have undergone rapid devel-
opments and many variants have been previously explored.
For instance, in the continuous setting, there have been vari-
ants which add different types of noise in the forward diffu-
sion process, e.g., GMM-based noise [4, 9] or noise from a
Mixture-of-Cauchy distribution [13]. Some previous works
also investigate discrete diffusion models [1, 11], but they
explore the addition of noise sampled from a Uniform distri-
bution. These works [1, 11] discretize the continuous pixel
space (where each pixel now takes discrete values) and find
that it is effective to perform diffusion on the discrete space



of pixel values. Conversely, we instead formulate a row of
our image as representing probabilities for discrete states
(where each pixel represents a state), and perform discrete
diffusion over these discrete states (with continuous proba-
bility values) by adding Multinomial noise.
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