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The supplementary material encompasses multiple de-
tails and insights complementing the main paper as follows.
In Section I, we introduce and clarify the notations used
throughout the paper. Theoretical insights are presented in
Section A, delving into the theoretical foundations of our
methods. Section B evaluates the stability of ABNN, shed-
ding light on its robustness. Section C shifts the focus to the
stability of the training procedure, an essential aspect de-
serving exploration in every post-hoc technique. Section D
delves into a sensitivity analysis and ablation study, explor-
ing key components’ resilience and performance impact.
Section E focuses on the quality of the posterior estimated
by ABNN. Additionally, Sections G and F detail the train-
ing hyperparameters and showcase additional experiments,
providing a comprehensive view of our methodology. Fi-
nally, section H outlines the impact of varying the number
of finetuning iterations M and the number of sampling in-
stances L on ABNN.

A. Theoretical Analysis
In this section, we develop a mathematical formalism to
study the theoretical properties of ABNN.

A.1. Stability of ABNN

Variational inference BNNs [2] are not commonly used in
computer vision due to their challenges in scaling prop-
erly for deeper high capacity DNNs [4]. In this section,
we derive theoretical insights that entail the greater stability
of ABNN, arguably also a Variational Inference BNN (VI-
BNN). We start with deriving the gradients for a layer in a
classic 2-hidden-layer MLP BNN. For the gradient of the
loss on the mean of the weights of layer j, we have:
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On its standard deviation, we have:
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For the gradients of the ABNN parameters, in the case
of a 2-hidden-layer MLP BNN, we have:
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as well as, on β,
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We have four random variables: ∂LMAP(ω)
∂hj+1,i′′

, E(j+1)
i′′,i and

ϵj,i along with a′(uj,i). Let’s consider calculating the con-
ditional variance given ∂LMAP(ω)

∂hj+1,i′′ for all i′′. Assuming that
all random variables associated with a single neuron are in-
dependent, we have:
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Using the fact that ϵj,i,i′ is independent of E(j+1)
i′′,i and

a′(hj,i) we have that
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In the case of ABNN, we can express the conditional variance

as follows:
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Assuming that var [ϵj,ia′(uj,i)] = var
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magnitudes of the weight values, and we assume that they
are of similar magnitude. Consequently, the variance of the
gradient of the parameters βj,i is the smallest among all,



Figure A1. Illustration of the training loss (in blue) and the cor-
responding posterior distribution (in red). Due to the multi-modal
nature of the posterior, training multiple ABNNs with distinct final
weights (such as ω∗

1, ω∗
2, and ω∗

3) enables sampling from different
modes, enhancing the overall estimation of the posterior.

followed by the variance of the parameters γj,i and W
(j)
µ,i,i′ ,

which are roughly equivalent, with the highest variance ob-
served for W

(j)
σ,i,i′ . This property results in more stable

backpropagation for ABNN compared to classic VI-BNNs.

A.2. Multi-modes with ABNN

The posterior of the DNN often comprises multiple
modes [9, 15], making it non-trivial for an unimodal distri-
bution chosen to represent the BNN’s posterior to account
for these different modes effectively. One approach to ad-
dress this issue is to train multiple BNNs, as proposed in the
multi-SWAG method by Wilson and Izmailov [15]. How-
ever, adapting this strategy to VI-BNNs inherits the instabil-
ity issue from classic BNNs and may struggle to fit multiple
modes accurately.

Our solution, ABNN, also faces a similar challenge,
where we need to ensure that the technique doesn’t collapse
into the same local minima during training. We introduce
a small perturbation to the loss function to prevent this col-
lapse, which helps diversify the optimization process. This
perturbation involves modifying the class weights within
the cross-entropy loss. More precisely, contrary to classic
VI-BNN that optimizes the Evidence Lower Bound (ELBO)
loss, we propose to maximize the MAP. ABNNs optimize
the following loss:

L(ω) = −
∑

(xi,yi)∈D

α(yi) logP (yi | xi,ω)− logP (ω),

(A10)
In the standard cross-entropy loss, all classes are given
equal weight, typically represented as α(yi) = 1. However,
our approach deliberately introduces the random prior: ran-
dom weight adjustments for certain classes, denoted as ηi
(such that α(yi) = 1 + ηi). This manipulation encourages
various ABNNs to specialize as experts in different classes.

Consequently, the training loss is formulated as follows:

L(ω) = LMAP(ω) + E(ω) (A11)

where

E(ω) = −
∑

(xi,yi)∈D

ηi logP (yi | xi,ω). (A12)

Let’s denote ω(0) as the parameter configuration that mini-
mizes LMAP. Let us suppose for simplicity that the loss func-
tion is convex to provide a theoretical grounding to the ran-
dom prior. After a single step of gradient descent (GD), we
have:

ω(1) = ω(0) − λ∇L(ω(0)), (A13)

where ω(1) represents the parameters after the first opti-
mization step, the superscript denotes the iteration number,
and λ is the learning rate.

We can express the updated loss L(ω(1)) using the GD,
as shown in Eq. (A14):

L(ω(1)) = L(ω(0) − λ∇L(ω(0))) (A14)

Now, by applying a first-order Taylor expansion to L, we
can express the updated loss L(ω(1)) as a function of the
initial loss L(ω(0)) and the gradient update, as shown in
Eq. (A15):

L(ω(1)) = L(ω(0))− λ∇L(ω(0))t∇L(ω(0)) (A15)

This equation can be further simplified by noticing that
∇LMAP(ω

(0)) = 0:

L(ω(1)) = L(ω(0))− λ∇E(ω(0))t∇E(ω(0)) (A16)

Starting with Eq. (A16), we have:
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∑

(xi,yi)∈D

∑
(xi′ ,yi′ )∈D
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logP (yi′ | xi′ ,ω
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Under the assumption that ληiηi′ is small and that
logP (yi′ | xi′ ,ω) is bounded, we can approximate the
loss as follows: L(ω(1)) ≃ L(ω(0)). Consequently, we
have ∇L(ω(1)) ≃ ∇L(ω(0)), and after another optimiza-
tion step, ω(2) is updated as ω(2) = ω(1) − λ∇L(ω(1)) =
ω(0) − 2λ∇L(ω(0)).

By applying the same technique iteratively, for all t, we
can approximate the loss as L(ω(t)) ≃ L(ω(0)). This leads
also to the relationship ω(t) = ω(0) − tλ∇L(ω(0)).

Under the conditions that the loss is convex, the deriva-
tives of the DNN are bounded, and ληiηi′ is small, we can
find minima of L with similar loss values by introducing



weight diversity. This loss function can be valuable in en-
couraging each DNN to escape from the global minima,
particularly in convex cases. In non-convex cases, standard
SGD may already help escape from local minima, but this
additional loss may offer extra assistance in avoiding the
same local minima. In Figure A1, we present a visualization
depicting the training loss alongside the posterior distribu-
tion. This Figure highlights the importance of training mul-
tiple ABNNs with different optimal solutions to improve the
quality in estimating the posterior distribution.

A.3. Discussion on the Bayesian Neural Network
Nature of ABNN

The Law of the Unconscious Statistician (LOTUS) [5] is a
theorem in probability theory that offers a method for com-
puting the expected value of a function of a random vari-
able. Hence, for a continuous random variable X with a
probability density function fX(x), the expected value of a
function Y = g(X) is expressed as:

EY (Y ) = EX [g(X)] (A18)

In our scenario, let Uj denote the random variable as-
sociated with uj , and W (j) represent the random variable
W (j) (we use the same letter for simplification). Thus, we
have:
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For simplification, we set βj=0, which leads to

varUj
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2

(A20)

Here, the parameters γj and βj are optimized to obtain
the best Bayesian Neural Network (BNN)

B. Experiment on the variance of the gradient
To validate our hypothesis that ABNN is more stable than
VI-BNNS, as detailed in section A.1, we analyze the vari-
ances of the gradients of classic DNNs, VI-BNNs, and
ABNNs. Table A1 reveals that the gradient variance of
BNNs are significantly greater than that of DNNs, align-
ing with the inherent challenges in training BNNs. Notably,
ABNN exhibits a considerably lower gradient, stemming
from only the weights of BNL are trained. Both empir-
ical observations and theoretical considerations affirm the
superior stability of ABNN on this side. Additionally, Ta-
ble A1 includes results for a VI-BNN, which, as discussed
in this section, exhibits suboptimal performance. Notewor-
thy other works [4, 7] also express concerns regarding the
stability of VI-BNNs.

Method variance (10−4)

ResNet50 1.43
ResNet50 BNN 2.54
ResNet50 ABNN 3.20·10−2

Wide-ResNet 1.37
Wide-ResNet BNN 2.53
Wide-ResNet ABNN 9.91·10−2

Table A1. Variance of gradients on relevant parameters
Single model: every weight (no bias)
BNN: means of the weight samplers
ABNN: parameters linked to the BNL layers

Acc ECE AUPR AUC FPR95

Single model 0.356 0.0002 1.036 1.445 2.740
one ωMAP + Multiple ABNN 0.066 0.0009 0.130 0.224 0.658
Multiple ωMAP + ABNN 0.324 0.0011 1.131 1.570 3.202

Table A2. Standard Deviation (SD) Comparison of ABNN and
DNN. The first row presents the SD of a single DNN, while the
second row depicts the SD of ABNN starting from a single check-
point. The last row quantifies the SD of ABNN when trained
from different checkpoints. All training scenarios use the opti-
mal hyperparameters for ABNN on a ResNet-50 architecture on
the CIFAR-10 dataset.

C. Discussion on stability of the training of
ABNN

ABNN being a post-hoc technique, it is imperative to en-
sure that it does not introduce instability to DNNs, espe-
cially in the critical domain of uncertainty quantification.
We train multiple single models based on a ResNet-50 ar-
chitecture on CIFAR-10 to verify this point, calculating the
standard deviation of the different metrics. Additionally, we
derive several ABNNs starting from these checkpoints and
assess the variance. Finally, we apply our technique to train
an ABNN for each checkpoint of the single models. Ta-
ble A2 demonstrates that our approach minimally increases
the variance, confirming that it does not introduce instabil-
ity to the uncertainty quantification process.



D. Ablation study of ABNN and Sensitivity
analysis

In Table A3, we conduct a study to inspect the impact of
adding or removing two characteristics from our method.
First, we investigate whether the addition of the random
prior (linked to E term in Eq. (A12)), which introduces dis-
turbance to the loss, improves the performance of ABNN.
We test the Random Prior (RP) to check whether E con-
tributes positively. Notably, when training a single RP
model (when MM is ✗), it appears to degrade performance
as it corrupts the cross-entropy. Conversely, in the case of
training multiple ABNNs (MM is ✓), RP seems to improve
uncertainty quantification metrics. The second aspect is the
training of multiple modes: Table A3 shows that incorporat-
ing multiple modes (MM is ✓) improves the quality of the
uncertainty quantification, in particular for OOD detection.

We analyze the performance variations in Tables A4 and
A5 by modifying the learning rate during the fine-tuning
phase. It’s essential to highlight that this hyperparameter is
the only one of ABNN. We fine-tune a single model with
various learning rates for this evaluation after adapting it to
ABNN. Remarkably, the learning rate appears non-critical,
as the performances on CIFAR-10 and CIFAR-100 exhibit
minimal variations, around one percent.

E. Discussion on diversity of ABNN

We trained a Deep Ensembles of ResNet-50 architecture for
200 epochs, specifically three networks. As demonstrated
in [6], Deep Ensembles strikes a good balance between ac-
curacy and diversity, enabling effective uncertainty quan-
tification. Simultaneously, we train three ABNNs, initializ-
ing them from the same checkpoint. It’s important to high-
light that all ABNN parameters were trained for this exper-
iment. To visually compare the results, akin to [6] (Figure
2.c), we conduct a t-SNE analysis on the latent space of all
the checkpoints after each epoch. Initially, ABNN shows
limited diversity due to having only one checkpoint. How-
ever, as training progresses, some diversity emerges, though
less than observed in Deep Ensembles. Table A6 illustrates
that ABNN exhibits lower mutual information than BNN
on both in-distribution (IDs) and out-of-distribution (OOD)
samples. Yet, interestingly, ABNN achieves a superior mu-
tual information ratio on OODs/IDs. It’s worth noting that
mutual information serves as a metric for measuring diver-
sity and can also quantify epistemic uncertainty. Mutual
information is defined for a finite set {ω1, . . .ωM} of M
weight configurations sampled from the posterior distribu-
tion as :
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Epistemic uncertainty
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with H(·) the entropy is defined by :

H(P (y | x,ω)) = −
∑
y

P (yi | xi,ω) logP (yi | xi,ω)

(A22)
The good mutual information ratio highlights ABNN’s

superior ability to detect out-of-distribution samples com-
pared to BNN. Moreover, Figure ?? illustrates that benefit-
ing from multiple training instances, ABNN can effectively
model multi-modes—a capability beyond the reach of clas-
sical BNNs. This is particularly valuable given the inherent
multi-modal nature of the posterior.

F. Extra Experiments

F.1. ViT transfer learning

We also show that ABNN can be used in contexts of transfer
learning. Table A7 presents the comparative performance of
ViT B-16 pre-trained on ImageNet-21k and fine-tuned with
and without a mono-modal ABNN on CIFAR-100 in 10,000
steps. Despite the mono-modality of ABNN in this experi-
ment, we show that the corresponding ViT outperforms the
classic fine-tuning in calibration and AUPR.

F.2. Extra baselines

To benchmark our method against other posthoc tech-
niques, we we implement a variant of Test-Time Augmenta-
tion [1, 10, 11], incorporating random Gaussian noise with
a specified standard deviation of 0.08. The objective is to
introduce diversity and ensemble different predictions by
leveraging the added noise. Like [8], we experimented with
adding noise to the latent space, representing the scenario
where ABNN is not trained. We tested various levels of
standard deviation, and the corresponding results are sum-
marized in Table A8. Notably, the untrained ABNN does
not perform effectively, underscoring the significance of a
brief finetuning phase. Additionally, we train a VI-BNN, a
non-posthoc technique, to understand the performance of
a traditional BNN. It’s noteworthy that VI-BNNs proved
challenging to train and demonstrated subpar performance.



RP MM Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓
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N
et

-5
0 ✗ ✗ 94.7 1.0 96.8 94.1 17.3

✓ ✗ 95.2 0.9 96.7 94.4 15.3
✗ ✓ 95.3 1.34 97.1 94.8 15.7
✓ ✓ 95.4 0.9 97.0 94.7 15.1

W
id

eR
es

N
et ✗ ✗ 94.4 1.34 96.4 93.7 18.2

✓ ✗ 92.8 2.2 97.5 95.3 14.8
✗ ✓ 94.9 1.38 97.3 95.1 15.7
✓ ✓ 93.7 1.8 98.5 96.9 12.6

C
IF

A
R

-1
00

R
es

N
et

-5
0 ✗ ✗ 78.8 5.7 89.3 80.8 50.4

✓ ✗ 78.7 5.5 89.4 81.0 50.1
✗ ✓ 78.3 5.8 89.6 81.6 48.2
✓ ✓ 78.8 5.6 89.7 81.6 49.0

W
id

eR
es

N
et ✗ ✗ 80.5 5.6 84.0 72.6 62.2

✓ ✗ 79.6 5.5 84.7 74.9 55.8
✗ ✓ 80.4 5.5 85.0 75.0 57.7
✓ ✓ 78.2 5.9 87.8 79.7 49.0

Table A3. Performance comparison (averaged over five runs) on CIFAR-10/100 using ResNet-50 and WideResNet28×10. RP is
Random Prior, and MM is multi-mode. For OOD detection, we use the SVHN dataset.

Coef. LR Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓
×10−1 95.5 0.9 96.2 93.0 20.7
×2 · 10−1 95.4 0.9 96.5 93.8 18.2
×5 · 10−1 95.4 1.0 96.3 93.3 19.9
×1 95.4 0.9 97.0 94.7 15.1
×2 95.3 1.1 95.7 92.3 22.0
×5 94.6 1.5 96.1 93.1 19.6
×10 93.9 1.1 96.7 94.2 19.2

Table A4. Sensitivity Analysis of the Learning Rate on CIFAR-
10. We conducted training for ABNN using a learning rate set at
0.0057 multiplied by the Coef LR.

Coef. LR Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓
×10−1 79.0 5.4 89.0 80.3 51.5
×2 · 10−1 78.9 5.5 88.6 79.9 52.5
×5 · 10−1 78.9 5.6 88.9 80.0 52.5
×1 78.9 5.5 89.4 81.0 50.1
×2 78.8 5.7 88.6 79.8 52.6
×15 79.0 5.5 88.8 80.1 52.0
×10 78.8 5.7 88.8 80.2 51.4

Table A5. Sensitivity Analysis of the Learning Rate on CIFAR-
100. We conducted training for ABNN using a learning rate set at
0.00139 multiplied by the Coef. LR.

G. Training hyperparameters

Table A9 provides a detailed overview of all the hyperpa-
rameters employed throughout our study. We use SGD in

ID OOD OOD/ID

ABNN 1.39e-4 5.22e-4 3.76
BNN 0.139 0.179 1.28

Table A6. Evaluation of the average Mutual Information on the
test set and the OOD set of the different sample from an ABNN or
a BNN.

Acc ECE AUPR AUC FPR95

Single model 92.0 4.4 96.6 92.7 28.1
ABNN 91.9 1.4 96.9 92.5 33.9

Table A7. Transfer learning of a ViT pre-trained on ImageNet-
21k on CIFAR-100. The first line is the classic pre-trained model
fine-tuned with ABNN, and the second is fine-tuned with the clas-
sic layer normalization.

conjunction with a multistep learning-rate scheduler for im-
age classification tasks, adjusting the rate by multiplying
it by γ-lr at each milestone. It’s important to note that,
for stability reasons, BatchEnsemble based on ResNet-50
employed a lower learning rate of 0.08, deviating from the
default 0.1. Our ”Medium” data augmentation strategy en-
compasses a blend of Mixup [17] and Cutmix [16], with a
switch probability of 0.5. Additionally, timm’s augmenta-
tion classes [13] were incorporated with coefficients of 0.5
and 0.2. RandAugment [3] with parameters m = 9, n = 2,
and mstd = 1, along with label-smoothing [12] of intensity



Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓

C
IF

A
R

-1
0

Single model 95.53 0.83 96.52 93.70 18.43
VI BNN 75.66 5.40 80.60 69.53 66.62
Test-Time Augmentation 89.95 2.49 93.78 89.95 25.12
Noise on latent space std=0.01 95.51 0.82 96.51 93.68 18.56
Noise on latent space std=0.1 95.46 0.90 95.88 92.64 20.94
Noise on latent space std=1 18.66 31.58 71.89 50.86 93.27
ABNN 95.43 0.85 97.03 94.73 15.11

C
IF

A
R

-1
00

Single model 79.05 5.34 88.72 79.96 52.04
VI BNN 41.17 8.97 78.44 61.82 86.15
Test-Time Augmentation 72.65 7.67 86.64 76.89 55.52
Noise on latent space std=0.01 79.03 5.39 88.68 79.85 52.54
Noise on latent space std=0.1 77.49 6.36 86.53 75.19 64.42
Noise on latent space std=1 1.03 11.91 74.08 50.92 95.74
ABNN 78.94 5.47 89.36 81.04 50.12

Table A8. Performance comparison of different Post-hoc and BNN uncertainty quantification baselines on CIFAR-10/100 using
ResNet-50.

0.1, were also applied.
In the case of ImageNet, we follow the A3 procedure

outlined in [14] for all models. It’s worth mentioning that
training according to the exact A3 procedure was not con-
sistently feasible; please refer to the specific subsections for
additional details.

We highlight that, to enhance training stability and fasten
the training, we introduc a hyperparameter α in the BNL
layer. This transforms the layer as follows:

BNL(hj) =
hj − µ̂j

σ̂j
× γj(1 + ϵjα) + βj . (A23)

(A24)

The hyperparameter α is typically set to 0.01, except in
the case of ViT, where specific considerations may apply.

H. Discussion on the influence of the parameter
L and M

In table A11, we observe the evolution of parameter M for
ABNN. It is noticeable that this parameter increases con-
sistently with the number of fine-tuned DNNs (M ). This
indicates that by expanding the size of the ensemble, perfor-
mance gains can potentially be achieved. As for parameter
L, we observe minimal variations. This is likely because
training with Gaussian noise (present in BNL) might turn
the DNN relatively robust to these perturbations. Therefore,
we advocate against using a large value for L.

I. Notations
We summarize the main notations used in the paper in Table
A12.



Dataset Networks Epochs Batch size start lr Momentum Weight decay γ-lr Milestones Data augmentations

C10 R50 200 128 0.1 0.9 5·10−4 0.2 60, 120, 160 HFlip
C10 WR28-10 200 128 0.1 0.9 5·10−4 0.2 60, 120, 160 HFlip
C100 R50 200 128 0.1 0.9 5·10−4 0.2 60, 120, 160 HFlip
C100 WR28-10 200 128 0.1 0.9 5·10−4 0.2 60, 120, 160 Medium

Table A9. Hyperparameters for the image classification experiments. HFlip denotes the classical horizontal flip.

Dataset Networks Epochs Batch size start lr Alpha RandomPrior Momentum Weight decay γ-lr Milestones Data augmentations

C10 R50 5 128 0.01 0.1 7 0.9 10−4 / / HFlip
C10 WR28-10 5 128 0.01 0.1 7 0.9 10−4 / / HFlip
C100 R50 5 128 0.01 0.1 7 0.9 10−4 / / HFlip
C100 WR28-10 5 128 0.01 0.1 7 0.9 10−4 / / HFlip
Imagenet R50 1 128 0.0044 0,01 8 0.9 5·10−4 / / HFlip
Imagenet ViT 0.25 128 7.33·10−6 0.0004 2 0.9 7 · 10−6 5 · 10−4 Constant HFlip
StreetHazards DeepLabv3+ 10 4 0.01 0.01 / 0.9 10−4 0.9 Polynomial HFlip, RandomCrop, ColorJitter, RandomScale
BDD-Anomaly DeepLabv3+ 10 4 0.01 0.01 / 0.9 10−4 0.9 / HFlip, RandomCrop, ColorJitter, RandomScale
MUAD DeepLabv3+ 6 4 0.044 0.01 / 0.9 10−4 0.9 / HFlip, RandomCrop, ColorJitter, RandomScale

Table A10. Hyperparameters for the image classification experiments with ABNN. HFlip denotes the classical horizontal flip. Random
prior has been used.

M Acc ↑ ECE ↓ AUPR ↑ AUC ↑ FPR95 ↓

C
.-1

0 3 94.74 1.19 96.96 94.64 17.05
4 95.02 0.86 96.95 94.78 16.08
5 94.97 0.73 97.06 94.84 16.01

Table A11. Sensitivity Analysis on the number of samples M and L on CIFAR-10 using ResNet-50.

Table A12. Summary of the main notations of the paper.

Notations Meaning

D = {(xi,yi)}Ni=1 The set of N data samples and the corresponding labels
j The index of the current layer
ω The set of all the weights of the DNN
ωm ∼ P (ω|D) The m-th sample from the concatenation of weights of the posterior of the DNN.
M The number of networks in an ensemble
ω(t) The concatenation of all the weights of the DNN after t steps of optimization
hj The pre-activation feature map and output of layer (j − 1) & input of layer j before normalization
uj The pre-activation feature map and output of layer (j − 1) & input of layer j before normalization
γj βj The parameters of the batch, instance, or layer normalization of layer j
µj σj The empirical mean and variance used by the batch, instance, or layer normalization of layer j
aj The feature map and output of layer j, aj = a(uj)
a(·) The activation function

W (j) The weights of the j-th layer in a Multi-Layer Perceptron (MLP).
W

(j)
µ The mean weights of the j-th layer in a BNN MLP

W
(j)
σ The standard variation weights of the j-th layer in a BNN MLP

ϵ(j) ∼ N (0,1) A vector sampled from a standard normal distribution at layer j
ϵ The concatenation of all the j− the ϵ(j) of each layer j
ϵl The l-th sample of ϵ
H The entropy function
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