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Supplementary Material

A. Implementation Details

The following sections include more details about the
datasets we use, our training and evaluation procedure.

A.1. Dataset

We select sequences containing dramatic camera motions
Tanks and Tamples [3] and CO3D-V2 [5] for training and
evaluation. The details of each sequence are listed in Table 1,
where Max rotation denotes the maximum relative rotation
angle between any two frames in a sequence. The sampled
images are further split into training and test sets. Starting
from the 5th image, we sample every 8th image in a sequence
as a test image. However, this leads to a change in the sam-
pling rate in the temporal domain among training images.
In order to study the effect of the sampling rate changes,
we follow the experiment setting proposed by [2]. Specifi-
cally, for scene Family in Tanks and Temples [3], we sample
every other image as test images, i.e., training on images
with odd frame ids and testing on images with even frame
ids. For CO3D-V2 [5], we randomly select 10 scenes from
6 categories, e.g., apple, bench, hydrant, plant, skateboard,
and teddybear. The selected sequence IDs are also shown
in Table 1 (bottom part). Compared to Tanks and Temples,
most scenes achieve the Max rotation of 180◦ indicating
more dramatic and larger camera motions than Tanks and
Temples.

Scenes Type Seq. length Frame rate Max. rotation (deg)

Ta
nk

s
an

d
Te

m
pl

es

Church indoor 400 30 37.3
Barn outdoor 150 10 47.5

Museum indoor 100 10 76.2
Family outdoor 200 30 35.4
Horse outdoor 120 20 39.0

Ballroom indoor 150 20 30.3
Francis outdoor 150 10 47.5
Ignatius outdoor 120 20 26.0

C
O

3D
-V

2

34 1403 4393 indoor 202 30 180.0
106 12648 23157 outdoor 202 30 180.0
110 13051 23361 indoor 202 30 71.6
219 23121 48537 indoor 202 30 180.0
245 26182 52130 indoor 202 30 180.0
247 26441 50907 indoor 202 30 180.0

407 54965 106262 indoor 202 30 180.0
415 57112 110099 outdoor 202 30 180.0
415 57121 110109 outdoor 202 30 180.0
429 60388 117059 outdoor 202 30 180.0

Table 1. Details of selected sequences. We downsample several
videos to a lower frame rate. FPS denotes frame per second. Max
rotation denotes the maximum relative rotation angle between any
two frames in a sequence. Our method can handle dramatic camera
motion (large maximum rotation angle).

Algorithm 1 Local 3DGS Optimization

{It, It+1} ← Two nearby images
DPT←Monocular Depth Estimation Model
Dt ← DPT(It)
Gt ← InitGauss(It, Dt) ▷ Init Local 3DGS
Tt ← Identity I ▷ Init Pose
while not converged do

Ît ← Rasterize(Gt)
L← Loss(It, Ît)
Gt ← Adam(∇L) ▷ Update Local 3DGS

end while
while not converged do

Ît+1 ← Rasterize(Tt ⊙Gt)
L← Loss(It+1, Ît+1)
Tt

∗ ← Adam(∇L) ▷ Update Pose
end while
Tt ←

∏t
i=1 Ti ▷ Output Pose

A.2. Training Details.

Local 3DGS. During the training of local 3DGS, we
first obtain the monocular depth map of the input image
by pre-trained monocular depth estimator, i.e., DPT [4],
ZeoDepth [1]. Then, the depth map is lifted up with the
given camera intrinsic. As the high-resolution input images
could lead to a huge amount of point clouds, we downsam-
ple the point cloud first before fitting it by 3DGS. Then, the
downsampled point cloud is used to initialize the local 3DGS
and is further optimized on the input view via photometric
loss for 500 iterations. To obtain the transformation of the 3D
Gaussian between two views, we freeze the pre-trained local
3DGS including all attributes (i.e., position, SH coefficient,
opacity, scale, and rotation), and learn the pose parameter of
a quaternion vector a translation vector by the photometric
loss between the target view and the rendering image. In
detail, the freeze local 3D Gaussian is first transformed into
the target view coordinate by the learnable pose parameter
and then rendered into the target view by the gaussian splat-
ting. The optimization of the camera pose learning process
takes 300 steps. The optimization algorithm of local 3DGS
is summarized in Algorithm 1
Global 3DGS. The optimization process of the global 3DGS
is comprehensively detailed in Algorithm 2. Specifically, it
starts and initializes from the first frame and its monocular
depth estimation. Subsequently, camera poses are estimated
in a sequential manner using the local 3DGS, as described in
Algorithm 1. Concurrently, the global 3DGS is updated with
all the observed images to date (i.e., from the first to the cur-



Algorithm 2 COLMAP-Free 3DGS Optimization

{It|t = 1...N} ← Image sequence
DPT←Monocular Depth Estimation Model
D1 ← DPT(I1)
G← InitGauss(I1, D1) ▷ Init Globla Gauss
i← 0 ▷ Iteration Count
for all Image It in It=1...N do

Tt ← Local 3DGS(It, It+1) ▷ Eestimate Pose
while not converged do

Tj , Ij ← SampleTrainingView() ▷ j ≤ t

Îj ← Rasterize(G, Tj)
L← Loss(Ij , Îj)
G← Adam(∇L) ▷ Update Gauss
i← i+ 1

end while
for all Gaussians (µ,Σ, c, α) in G do

if ∇pL > τp then ▷ Densification
SplitGaussian(µ,Σ, c, α)
CloneGaussian(µ,Σ, c, α)

end if
if α < ϵ or IsTooLarge(µ,Σ) then ▷ Pruning

RemoveGaussian()
end if

end for
end for

rent image), in tandem with the camera pose estimation. As
each new frame is introduced, the global 3DGS progressively
grows and expands through a densification process.

A.3. Evaluation Metrics

Novel View Synthesis. We use Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [7],
and Learned Perceptual Image Patch Similarity (LPIPS) [8]
to measure the novel view synthesis quality. For LPIPS, we
use a VGG architecture [6].
Pose Accuracy. To evaluate pose accuracy, we employ stan-
dard visual odometry metrics, including Absolute Trajectory
Error (ATE) and Relative Pose Error (RPE). ATE quanti-
fies the discrepancy between estimated camera positions
and their ground truth counterparts. RPE, on the other hand,
assesses the errors in relative poses between image pairs.
This includes both relative rotation error (RPEr) and relative
translation error (RPEt).

B. Additional Experiments

The subsequent sections present further quantitative and
qualitative results of novel view synthesis and camera pose
estimation, conducted on both the Tanks and Temples and
CO3D-V2 datasets.

scenes Nope-NeRF Ours
PSNR SSIM LPIPS PSNR SSIM LPIPS

189 20393 38136 29.37 0.85 0.54 32.41 0.92 0.26
247 26441 50907 23.49 0.73 0.54 23.88 0.75 0.36
407 54965 106262 25.53 0.83 0.58 27.80 0.84 0.35
429 60388 117059 22.19 0.62 0.56 24.44 0.68 0.36

46 2587 7531 25.3 0.73 0.46 25.44 0.80 0.21
mean 25.18 0.75 0.54 26.79 0.80 0.31

Table 2. Novel view synthesis results on CO3D V2. The best
results are highlighted in bold.

B.1. Novel View Synthesis.

Render Novel Views. As mentioned in the main paper, we
minimize the photometric error of the synthesized images
while freezing the 3DGS model to obtain the testing camera
poses. Because the test views are sampled from videos that
are close to the training views, these good results may be
obtained due to overfitting to the training images. Therefore,
we conduct an additional qualitative evaluation on more
novel views. Specifically, we fit a bezier curve from the
estimated training poses and sample interpolated poses for
each method to render novel view videos. The rendered
images are shown in Fig. 1 and Fig. 2. Compared to Nope-
NeRF [2], our approach renders photo-realistic images with
more details (please check the highlighted regions).
Unknown camera intrinsic. We also conduct experiments
with heuristic camera intrinsic, where we set the FoV of all
scenes to 79◦ and make the principle points to the image
center. The quantitative results are listed in the following
table. We find that by setting the camera intrinsic heuristi-
cally, the performance on novel view synthesis (NVS) and
camera pose estimation slightly degenerates which is rea-
sonable as the intrinsic parameters are also important and
could be further optimized along with the camera extrinsic
parameters.

Method PSNR SSIM LPIPS RPEt RPEr ATE
Heuristic Intrinsic 30.90 0.92 0.09 0.044 0.072 0.004

G.T. Intrinsic 31.28 0.93 0.09 0.041 0.069 0.004

Different monocular depth estimator. We conduct ablation
studies on different monocular depth estimation algorithms
in the following table. We notice that more accurate monoc-
ular depth estimation results could always lead to better
performance.

scenes ZeoDepth DepthAnything
PSNR SSIM RPEt RPEr PSNR SSIM RPEt RPEr

Church 30.49 0.93 0.012 0.033 30.66 0.93 0.012 0.029
Barn 28.34 0.86 0.039 0.057 30.54 0.88 0.034 0.113

Museum 30.40 0.91 0.052 0.158 30.92 0.92 0.043 0.130
Family 28.79 0.91 0.093 0.037 32.54 0.95 0.037 0.069
Horse 33.32 0.95 0.101 0.035 33.96 0.96 0.108 0.075

Ballroom 32.86 0.96 0.021 0.032 32.54 0.96 0.022 0.030
Francis 31.05 0.89 0.057 0.086 32.73 0.91 0.027 0.126
Ignatius 22.75 0.75 0.172 0.083 28.89 0.89 0.043 0.075

mean 29.75 0.90 0.068 0.065 31.60 0.93 0.041 0.081



Figure 1. Qualitative comparison for novel view synthesis on Tanks and Temples. For each method, we fit the learned trajectory with a
bezier curve and uniformly sample new viewpoints for rendering. Better viewed when zoomed in.



Figure 2. Qualitative comparison for novel view synthesis on Tanks and Temples. For each method, we fit the learned trajectory with a
bezier curve and uniformly sample new viewpoints for rendering. Better viewed when zoomed in.



Figure 3. Qualitative comparison for novel view synthesis on Tanks and Temples. Our approach produces more realistic rendering results
than other baselines. Better viewed when zoomed in.

Additional results on CO3D-V2. We conduct experiments
on 5 additional scenes of the CO3D-V2 dataset and the novel
view synthesis results are summarized in Table 2.
Additional Visualization. We present additional qualitative
results for novel view synthesis on Tanks and Temples and
CO3D-V2 in Fig. 3 and Fig. 4 following the same evaluation
procedure described in the main paper.

B.2. Camera Pose Estimation

Additional results on CO3D-V2. We conduct experiments
on 5 additional scenes of the CO3D-V2 dataset for the task of
camera pose estimation. The results are reported in Table 3.
We show better performances than Nope-NeRF [2] in both
pose accuracy and synthesis quality.
Additional Visualization. Additional qualitative results for
camera pose estimation on CO3D-V2 are presented in Fig. 5,
following the evaluation procedure outlined in the main pa-
per. In scenarios involving large camera motions, our ap-
proach significantly outperforms Nope-NeRF.

scenes Nope-NeRF Ours
RPEt RPEr ATE RPEt RPEr ATE

189 20393 38136 0.444 2.84 0.034 0.064 0.225 0.007
247 26441 50907 0.34 1.395 0.032 0.395 0.477 0.007

407 54965 106262 0.553 4.685 0.057 0.31 0.243 0.008
429 60388 117059 0.398 2.914 0.055 0.134 0.542 0.018

46 2587 7531 0.426 4.226 0.023 0.095 0.447 0.009
mean 0.432 3.212 0.040 0.200 0.387 0.010

Table 3. Camera Pose Estimation on CO3D V2. The best results
are highlighted in bold.
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Figure 5. Qualitative comparison for Camera Pose Estimation on CO3D-V2. The ground-truth trajectory and the estimated one are
shown in blue and red, respectively.
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