
Generate Like Experts: Multi-Stage Font Generation by Incorporating
Font Transfer Process into Diffusion Models

Supplementary Materials

6. Proofs and Derivations
In this section, we provide the detailed proofs and derivations for our proposed model. Our derivations mainly follow the
derivations of denoising diffusion probabilistic models in Ref. [1, 2], and people can refer to them for more details.

6.1. The Derivation of Eq. (9)

In this paper, our proposed model is constructed by utilizing a font transfer process to connect the traditional diffusion
processes (DDPM) of the latent features zct and zgt , where the latent feature zgt of the target font is gradually replaced by the
latent feature zct of the source font from t = t1 to t = t2. Therefore, in data sub-space, only zgt exists at t = t1 while only zct
exists at t = t2. The corresponding latent features z̃t1 and z̃t2 can be expressed as

z̃t1 = zgt1 =
√
ᾱt1z

g
0 +

√
1− ᾱt1ϵ0, (24)

z̃t2 = zct2 =
√
ᾱt2z

c
0 +

√
1− ᾱt2ϵ0. (25)

As the latent feature zgt will be gradually replaced by the latent feature zct in the font transfer region t ∈ (t1, t2], we formulate
the forward latent feature z̃t in this region as

z̃t =
√
αtz̃t−1 +

√
1− αtϵ

∗
t−1 −Ψ(zg0 − zc0), (26)

where {ϵ∗t , ϵt} ∼ N (0, I). Ψ is the coefficient for the term zg0 − zc0, which will be determined in this section. With the
reparameterization trick, the forward latent z̃t in region (t1, t2] can be written as

z̃t =
√
αtz̃t−1 +

√
1− αtϵ

∗
t−1 −Ψ(zg0 − zc0) (27)

=
√
αt

(√
αt−1z̃t−2 +

√
1− αt−1ϵ

∗
t−2 −Ψ(zg0 − zc0)

)
+
√
1− αtϵ

∗
t−1 −Ψ(zg0 − zc0) (28)

=
√
αtαt−1z̃t−2 +

√
1− αtαt−1ϵt−2 − (1 +

√
αt)Ψ(zg0 − zc0) (29)

=
√
αtαt−1 · · ·αt1+1z̃t1 +

√
1− αtαt−1 · · ·αt1+1ϵt1 −HtΨ(zg0 − zc0), (30)

and this equation can be further reduced by aligning the forward latent with the traditional diffusion process (DDPM) at
t = t1. Using Eq. (24), the latent feature z̃t in region (t1, t2] can be expressed as

z̃t =
√
αtαt−1 · · ·αt1+1

(√
ᾱt1z

g
0 +

√
1− ᾱt1ϵ

∗
0

)
+

√
1− αtαt−1 · · ·αt1+1ϵt1 −HtΨ(zg0 − zc0)

=
√
αtαt−1 · · ·α1z

g
0 +

√
1− αtαt−1 · · ·α1ϵ0 −HtΨ(zg0 − zc0)

=
√
ᾱtz

g
0 +

√
1− ᾱtϵ0 −HtΨ(zg0 − zc0), (31)

where we have defined Ht = 1+
√
αt +

√
αtαt−1 + · · ·+√

αtαt−1 · · ·αt1+2, and Ht has the following recursion formula,

Ht = 1 +
√
αt +

√
αtαt−1 + · · ·+√

αt · · ·αt1+2

= 1 +
√
αt

(
1 +

√
αt−1 +

√
αt−1αt−2 + · · ·+√

αt−1αt−2αt−3 · · ·αt1+2

)
= 1 +

√
αtHt−1, (32)

which has been utilized in our implementation for calculating Ht. The coefficient Ψ can be determined by aligning the
forward latent with the traditional diffusion process at t = t2,

Ψ =

√
ᾱt2

Ht2

=

√
α̃(1, t2)

1 +
∑t2

m=t1+2

√
α̃(m, t2)

, (33)

where we have defined α̃(t1, t2) =
∏t2

i=t1
αi. Note that Ht is a function with respect to time t, while Ψ is a constant once

we have defined t1 and t2.
Therefore, with the above derivations, the forward latent z̃t in the region (t1, t2] can be expressed as

z̃t =
√
ᾱtz

g
0 +

√
1− ᾱtϵ0 − (zg0 − zc0) Ψ Ht, (34)

which is the Eq. (9) in the main body.

6.2. The Derivation of Eq. (15)

Based on the variational bound on negative log-likelihood (Eq. (5) of DDPM [1]), we learn pθ(z̃t−1|z̃t) as an approximation
to the ground-truth denoising transition step q (z̃t−1|z̃t, z̃0), where z̃0 = zg0 . Once we obtain the forward latent z̃t of our
diffusion model, we can derive q (z̃t−1|z̃t, z̃0) in region (t1, t2] by using Bayes’ theorem:

q (z̃t−1|z̃t, z̃0) =
q (z̃t|z̃t−1, z̃0) q (z̃t−1|z̃0)

q (z̃t|z̃0)
. (35)

With Eq. (27) and Eq. (34), this equation can be further reduced to

q (z̃t−1|z̃t, z̃0) =
N

(
z̃t;

√
αtz̃t−1 −Ψ(zg0 − zc0), (1− αt)I

)
N (z̃t−1;

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0), (1− ᾱt−1)I)

N (z̃t;
√
ᾱtz

g
0 −HtΨ(zg0 − zc0), (1− ᾱt)I)

∝ exp

{
−1

2

[(
z̃t −

(√
αtz̃t−1 −Ψ(zg0 − zc0)

))2
1− αt

+
(z̃t−1 − (

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0)))

2

1− ᾱt−1

− (z̃t − (
√
ᾱtz

g
0 −HtΨ(zg0 − zc0)))

2

1− ᾱt

]}

∝ exp

{
−1

2

[(
αt

1− αt
+

1

1− ᾱt−1

)
z̃2t−1

−2

(√
αtz̃t +

√
αtΨ(zg0 − zc0)

1− αt
+

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0)

1− ᾱt−1

)
z̃t−1

]}
= exp

{
−1

2

[(
αt (1− ᾱt−1) + 1− αt

(1− αt) (1− ᾱt−1)

)
z̃2t−1

−2

(√
αtz̃t +

√
αtΨ(zg0 − zc0)

1− αt
+

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0)

1− ᾱt−1

)
z̃t−1

]}
= exp

{
−1

2

(
1− ᾱt

(1− αt) (1− ᾱt−1)

)
z̃2t−1 − 2

(√
αtz̃t+

√
αtΨ(zg

0−zc
0)

1−αt
+

√
ᾱt−1z

g
0−Ht−1Ψ(zg

0−zc
0)

1−ᾱt−1

)
(1− αt) (1− ᾱt−1)

1− ᾱt
z̃t−1


= exp

{
−1

2

(
1− ᾱt

(1− αt) (1− ᾱt−1)

)
[
z̃2t−1 − 2

√
αt (z̃t +Ψ(zg0 − zc0)) (1− ᾱt−1) + (

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0)) (1− αt)

1− ᾱt
z̃t−1

]}
∝ N (z̃t−1;µq (z̃t, z

g
0 , t) ,Σq (t)) , (36)

where µq (z̃t, z
g
0 , t) and Σq (t) are defined as

µq (z̃t, z
g
0 , t) =

√
αt (z̃t +Ψ(zg0 − zc0)) (1− ᾱt−1) + (

√
ᾱt−1z

g
0 −Ht−1Ψ(zg0 − zc0)) (1− αt)

1− ᾱt
, (37)

Σq (t) = σ2
t I =

(1− αt) (1− ᾱt−1)

1− ᾱt
I. (38)

Note that the variance remains the same as DDPM, since we only incorporate font transfer in the data sub-space and keep the
noise sub-space unchanged. We further rewrite the mean function µq (z̃t, z

g
0 , t) as

µq (z̃t, z
g
0 , t) =

√
αt (1− ᾱt−1)

1− ᾱt
z̃t +

Ht−1 (1− αt)−
√
αt (1− ᾱt−1)

1− ᾱt
Ψzc0

+

√
αt (1− ᾱt−1)Ψ + (

√
ᾱt−1 −Ht−1Ψ) (1− αt)

1− ᾱt
zg0 . (39)

In order to match pθ(z̃t−1|z̃t) to the ground-truth denoising transition step q (z̃t−1|z̃t, z̃0), we model pθ(z̃t−1|z̃t) as a Gaussian
with pθ(z̃t−1|z̃t) = N (z̃t−1|µθ(z̃t, t),Σθ(z̃t, t)). We first set the variances of pθ(z̃t−1|z̃t) and q (z̃t−1|z̃t, z̃0) to match
exactly, thus

Σθ(z̃t, t) = σ2
t I =

(1− αt) (1− ᾱt−1)

1− ᾱt
I. (40)

Once the variances of the two Gaussian match exactly, Ref. [2] further proves that optimizing the KL-divergence between
q (z̃t−1|z̃t, z̃0) and pθ(z̃t−1|z̃t) reduces to minimize the difference between the means of these distributions. Therefore, fol-
lowing the common practice [1, 2], we utilize the prediction network z̃

(g)
θ (z̃t, t) to predict zg0 , and µθ (z̃t, t) can be expressed

as

µθ (z̃t, t) =

√
αt (1− ᾱt−1)

1− ᾱt
z̃t +

Ht−1 (1− αt)−
√
αt (1− ᾱt−1)

1− ᾱt
Ψzc0

+

√
αt (1− ᾱt−1)Ψ + (

√
ᾱt−1 −Ht−1Ψ) (1− αt)

1− ᾱt
z̃
(g)
θ (z̃t, t), (41)

which is the Eq. (15) in the main body.

7. Implement Details
In this section, we provide more implementation details about our multi-stage font generation model.

7.1. Multi-Stage Font Generative Process

We provide the pseudo-code of multi-stage font generative process in Algorithm 1.

Algorithm 1: Multi-Stage Font Generative Process
Input: The coefficients αt, ᾱt, σt, Ht, and Ψ. The latent feature zc

0 of the source image. The conditions y1 and y2

for font transfer stage and font refinement stage, respectively.
Output: The generated font image IG.
// step 1: Structure Construction Stage

1 ϵ ∼ N (0, I);
2 z̃t2 =

√
ᾱt2z

c
0 +

√
1− ᾱt2ϵ ;

// step 2: Font Transer Stage
3 for t = t2 to t = t1 + 1 do
4 ϵ ∼ N (0, I);
5 µθ =

√
αt(1−ᾱt−1)

1−ᾱt
z̃t +

(√
αt(1−ᾱt−1)

1−ᾱt
Ψ+

(
√
ᾱt−1−Ht−1Ψ)(1−αt)

1−ᾱt

)
z̃
(g,1)
θ1

(z̃t, t,y1) +
[Ht−1(1−αt)−

√
αt(1−ᾱt−1)]

1−ᾱt
Ψzc

0;

6 z̃t−1 = µθ + σtϵ;

// step 3: Font Refinement Stage
7 for t = t1 to t = 1 do
8 ϵ ∼ N (0, I) if t > 1, else ϵ = 0;
9 µθ =

√
αt(1−ᾱt−1)

1−ᾱt
z̃t +

√
ᾱt−1(1−αt)

1−ᾱt
z̃
(g,2)
θ2

(z̃t, t,y2);
10 z̃t−1 = µθ + σtϵ;

11 zg
0 = z̃0 ;

12 return IG = D(zg
0)

7.2. Optimization Process

We use a two-stage optimization process to train our proposed model. The pseudo-code of the optimization process is
provided in Algorithm 2.

Algorithm 2: Optimization Process

// Stage 1-1: Optimize E1
c, E1

s, and z̃
(g,1)
θ1

(z̃t, t,y1) in Region (t1, t2]

1 while True do
2 Loading training pairs (Is, Ic, Ig) by picking Is and Ic based on Ig;
3 Calculating condition y1 = C(F(e1c),F(e1s)) by flattening and concating e1c = E1

c (Ic) and e1s = E1
s (Is);

4 Calculating zg0 = E(Ig) and zc0 = E(Ic);
5 Sampling t ∈ (t1, t2] and calculating z̃t by Eq. (9);
6 Using conditional prediction network z̃

(g,1)
θ1

(z̃t, t, y1) to predict zg0 ;

7 Using loss function Eq. (22) to train E1
c , E1

s , z̃(g,1)
θ1

(z̃t, t,y1) in an end-to-end manner;
8 Until Converged;

// Stage 1-2: Optimize E2
c, E2

s, and z̃
(g,2)
θ2

(z̃t, t,y2) in Region (0, t1]

9 while True do
10 Loading training pairs (Is, Ic, Ig) by picking Is and Ic based on Ig;
11 Calculating condition y2 = C(F(e2c),F(e2s)) by flattening and concating e2c = E2

c (Ic) and e2s = E2
s (Is);

12 Calculating zg0 = E(Ig) and zc0 = E(Ic);
13 Sampling t ∈ (0, t1] and calculating z̃t by Eq. (8);
14 Using conditional prediction network z̃

(g,2)
θ2

(z̃t, t, y2) to predict zg0 ;

15 Using loss function Eq. (23) to train E2
c , E2

s , z̃(g,2)
θ2

(z̃t, t,y2) in an end-to-end manner;
16 Until Converged;

// Stage 2: Using z̃
(g,1)
θ1

(z̃t, t,y1) to Fine-tune E2
c, E2

s, and z̃
(g,2)
θ2

(z̃t, t,y2) in Region

(0, t1]
17 while True do
18 Loading training pairs (Is, Ic, Ig) by picking Is and Ic based on Ig;
19 Calculating condition y1 = C(F(e1c),F(e1s)) by flattening and concating e1c = E1

c (Ic) and e1s = E1
s (Is);

20 Calculating zg0 = E(Ig) and zc0 = E(Ic);
21 Sampling t′ ∈ (t1, t2] and calculating z̃t′ by Eq. (9);
22 Using conditional prediction network z̃

(g,1)
θ1

(z̃t′ , t
′, y1) to predict zg0 ;

23 Sampling t′′ ∈ (0, t1] and using the predicted zg0 to calculate z̃t′′ by Eq. (8);
24 Calculating condition y2 = C(F(e2c),F(e2s)) by flattening and concating e2c = E2

c (Ic) and e2s = E2
s (Is);

25 Using conditional prediction network z̃
(g,2)
θ2

(z̃t′′ , t
′′, y2) to predict zg0 ;

26 Using loss function Eq. (23) to fine-tune E2
c , E2

s , z̃(g,2)
θ2

(z̃t′′ , t
′′,y2) in an end-to-end manner;

27 Until Converged;

7.3. Additional Details of Implementation and Optimization

We utilize the widely-used Stable Diffusion platform [3] to construct our proposed diffusion process in latent space. In the
training stage, we obtain the latent feature zc0 ∈ R16×16×4 and zg0 ∈ R16×16×4 by using the VAE encoder E to project
the source image Ic ∈ R128×128×3 and the target image Ig ∈ R128×128×3 into latent space, respectively. In the inference
stage, the prediction network z̃

(g,i)
θi

(z̃t, t, yi) will generate zg0 ∈ R16×16×4 by gradually denoising z̃t, and the generated font
image IG can be obtained by using the VAE decoder D to project zg0 back to the image space. Following common practice in
FFG, we construct the content encoder Ei

c and the style encoder Ei
s to generate the condition yi. The style encoder Ei

s and
the content encoder Ei

c have the same architecture, including 16 convolution layers and 3 down-sampling layers. We utilize
the content encoder Ei

c and the style encoder Ei
s to extract the content feature eic ∈ R16×16×1024 from the source image Ic

and the style feature eis ∈ R16×16×1024 from the reference images Is, respectively. Finally, the content and style features
are flattened and concatenated to build the condition yi ∈ R512×1024. Since the dimension of the condition yi is 1024, we

slightly modify the cross-attention module in z̃
(g,i)
θi

(z̃t, t, yi) to perform attention operation on the dimension 1024.
In this paper, we keep the VAE encoder E and decoder D frozen and train the remaining networks. Specifically, we utilize

the loss function Li
g (in Eq. (22) and (23)) to optimize the prediction network z̃

(g,i)
θi

(z̃t, t, yi) with the corresponding content

encoder Ei
c and style encoder Ei

s. The prediction network z̃
(g,i)
θi

(z̃t, t, yi) is initialized by the pre-trained Stable Diffusion
models, while the style encoder Ei

s and content encoder Ei
c are initialized by Kaiming initialization. The AdamW optimizer

with the learning rate lr = 3.2× 10−6 and batch size 16 is used to train our model.

8. Additional Experimental Results
8.1. Ablation Study on the Multi-Stage Font Generative Process

The selections of the region for different stages in the multi-stage generative process are hyper-parameters in our model,
which significantly impact image quality. Therefore, we conduct experiments on UFUC dataset to study the influence on
model performance by selecting different t1 and t2. As shown in Tab. 3, the configuration t1 = 200 and t2 = 800 achieves
the best record in terms of RMSE, PSNR and SSIM. Moreover, comparing the results in the first two rows (No. 1 and No.
2), the performance of t1 = 100 is slightly lower than t1 = 200, since the font refinement stage of t1 = 100 is too short
to modify the image appearances and local details. Furthermore, for the experiments with the fixed t1 and different t2 (e.g.,
No. 2, 4, 5), we find that the larger font transfer stage tends to generate better results, as the network is easy to model the
slow transformation process. However, when t2 is too large (e.g., t2 = 900 in No. 6), the structure construction stage cannot
provide enough global structure information for the generative process.

Table 3. Ablation study for the regions of different stages on UFUC dataset. The bold number indicates the best.

No. t1 t2 RMSE↓ PSNR↑ SSIM↑ LPIPS↓
1 100 800 0.2488 12.42 0.7131 0.1553
2 200 800 0.2475 12.45 0.7189 0.1527
3 300 800 0.2493 12.39 0.7155 0.1530
4 200 600 0.2602 12.03 0.7035 0.1708
5 200 700 0.2521 12.29 0.7138 0.1544
6 200 900 0.2496 12.40 0.7175 0.1524

Therefore, the hyper-parameters t1 and t2 are trade-off selections, and we select the configuration t1 = 200 and t2 = 800
in the following experiments.

8.2. Additional Qualitative Results

In this section, we provide more qualitative results of our proposed model.

Figure 6. Qualitative comparisons of our proposed model with other state-of-the-art methods on cross-lingual (Chinese to Korean) genera-
tion. Note that we use eight reference images in inference, and we only display one reference image in this figure.

Figure 7. Additional qualitative results of our proposed model on UFUC dataset.

Figure 8. Qualitative comparisons of our proposed model with other state-of-the-art methods on UFSC dataset.

Figure 9. Additional qualitative results of our proposed model on UFSC dataset.

Figure 10. Additional qualitative results of our proposed model for handwritten fonts in UFUC setting.

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 3, 5, 12.
[2] Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970, 2022. 13.
[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10684–10695, 2022. 3, 4, 5, 6, 14

	. Introduction
	. Related Works
	. Many-shot Font Generation
	. Few-shot Font Generation
	. Diffusion Probabilistic Models

	. Methodology
	. Background and Preliminary
	. Latent Diffusion Model with Font Transfer
	. Multi-Stage Font Generative Process
	. Overall Framework for Font Generation

	. Experiments
	. Implement Details
	. Dataset and Evaluation Metrics
	. Ablation Study
	Ablation Study on the Overall Framework
	Ablation Study on the Multi-Stage Font Generative Process
	Visualization Results

	. Comparison with the State-of-the-art Methods
	Quantitative Comparison
	Qualitative Comparison

	. Conclusion
	. Proofs and Derivations
	. The Derivation of Eq. (9)
	. The Derivation of Eq. (15)

	. Implement Details
	. Multi-Stage Font Generative Process
	. Optimization Process
	. Additional Details of Implementation and Optimization

	. Additional Experimental Results
	. Ablation Study on the Multi-Stage Font Generative Process
	. Additional Qualitative Results

