
Appendix for Instance-based Max-margin for Practical Few-shot Recognition

In this appendix, we present comprehensive implementa-
tion details for experiments conducted in both the proposed
pFSL and traditional FSL settings. Additionally, we offer
more in-depth analysis and results of our method.

1. Implementation Details
First, we describe the common details in all experiments.
The features z extracted by the backbone M were L2-
normalized. Whenever a linear classifier was trained, we al-
ways used Adam as the optimizer whose learning rate was
gradually decreased in a cosine scheduling, and the label
smoothed cross-entropy loss [14] was used as the learning
objective.

1.1. Setup for pFSL

The pre-trained model M was trained using various self-
supervised learning methods [1, 3–5, 9] on the ImageNet-
1K [13] training set. We obtained the pre-trained models
from their respective official implementations. To store the
features extracted by the backbone M in advance for con-
veniently conducting experiments, images were resized to
256 pixels along the shorter side using bicubic resampling,
then were center cropped to 224 × 224 pixels.

For the proposed IbM2, we always sampled 200 virtual
examples for every original training instance (i.e., R =
200). We initially set the value of accuracy threshold T
in Algorithm 1 of the main paper as 0.9. By preliminar-
ily training a linear classifier on the original training set D
before performing Algorithm 1, we got the empirical train-
ing accuracy upper bound (denoted as ACCup), set T as
the minimum of its initially predefined value (0.9 here) and
ACCup (where T = min{0.9,ACCup} in this case) to en-
sure its validity. During the process of searching for the
best value of ϵ, as shown in Algorithm 1, we initialized a
linear classifier once, and repeatedly trained it with learn-
ing rate 1.0 for 20 epochs until the searching range became
tight enough.

Next we trained a new randomly initialized linear clas-
sifier for IbM2 (based on Dϵ̂, the set of virtual examples)
or the baseline method (based on the original training set
D) for reporting the evaluation accuracy on test set. In this
stage, the learning rate was initialized as 0.05 and scaled
as init lr × batch size / 256. For ViT [7] architectures,

the linear classifier was trained with batch size 256 for 100
epochs. For ResNet50 [10], the linear classifier was trained
with batch size 512 for 60 epochs.

1.2. Setup for Traditional FSL

In this setup, the pre-trained models were generated by dif-
ferent approaches [6, 11, 12] on the base set. For PMF [11],
following their guidance, we resized the input images into
224 × 224 pixels while keeping them in small resolutions
for other two baselines [6, 12] (80 × 80 pixels in mini-
ImageNet [15] and 32 × 32 pixels in CIFAR-FS [2]).

The initial value of T in the proposed IbM2 was set as
0.999. During the search for ϵ, the linear classifier was ini-
tialized once and trained for 50 epochs with learning rate
1.0 at each search step. To get the final linear classifier, we
trained a new linear classifier with 200 epochs for a 5-way
few-shot task on training set of baseline (original training
set) and IbM2 (virtually sampled training set after the opti-
mal ϵ̂ was got), respectively.

As suggested in PMF [11], we sampled a small number
(20) of extra few-shot episodes sharing very similar seman-
tics with the evaluated ones from the novel split on each sce-
nario, in order to select the learning rate ranged in {0.00001,
0.0001, 0.001, 0.01, 0.1, 1} for the final training stage of
IbM2 or the baseline. The selected optimal learning rate
was used to train all 500 episodes of that scenario.

For PMF [11], we discarded its original fine-tuning
pipeline of updating weights of the whole backbone. We
only learned the linear classifier on top of the frozen fea-
tures as in pFSL setting to make the comparison fairer.

We performed experiments on PMF [11] using ViT [7]
and ResNet50 [10], S2M2R [12] using WRN-28-10 [16]
and Meta-Baseline [6] using ResNet12 [10] as the back-
bone. The other implementation details of traditional FSL
are the same with pFSL as aforementioned.

2. Further Comparative Analysis: Traditional
FSL vs. pFSL

The core concept of few-shot learning is rapidly enabling
a deep learning model to acquire new concepts, leveraging
prior knowledge. Building upon this concept, as discussed
in Section 3 of the main text, both traditional FSL and the
proposed pFSL aim to achieve this objective, but through
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Setting
Source of

Prior Knowledge
Evaluation

Way Run
Traditional FSL Base Set ≤ 5 ≥ 500

pFSL
Unsupervised
Large-Scale

Pre-trained model
≥ 200 ≤ 3

Table 1. Elaborated comparison for traditional FSL and pFSL.

distinct approaches. As illustrated in Table 1, our approach
diverges from traditional FSL by leveraging a model unsu-
pervised pre-trained on large-scale datasets, which naturally
encodes more general and domain-specific knowledge. This
enables our pFSL to emulate the human ability to perform
downstream tasks with few-shot capability. Additionally,
pFSL exhibits much more simplicity and convenience dur-
ing evaluation. Traditional FSL typically relies on a small
base set as prior knowledge, necessitating multiple individ-
ual runs to ensure accuracy due to the inherent instability
of one episode accuracy [8]. In contrast, pFSL’s many-way
characteristics streamline the evaluation process, requiring
only three runs to achieve reliable results.

3. More Comparative Results
We present additional results to further highlight IbM2’s
overall performance in enhancing the pFSL setting across
various pre-trained backbones. Table 2 serves as an exten-
sion of Table 1 in the main text, with a specific focus on the
CUB dataset.

References
[1] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-

janowski, Florian Bordes, Pascal Vincent, Armand Joulin,
Mike Rabbat, and Nicolas Ballas. Masked Siamese Net-
works for label-efficient learning. In European Conference
on Computer Vision, page 456–473. Springer, 2022. 1

[2] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations, pages 1–15, 2019. 1

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou,
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Dataset Pre-training
Method Backbone IbM2 Shot per Class

1 2 3 4 5 8 16

ImageNet-1K

DINO ViT-S/16 39.2 ± 0.3 49.2 ± 0.2 54.1 ± 0.4 56.7 ± 0.2 58.0 ± 0.1 60.4 ± 0.1 62.7 ± 0.1
✓ 39.2 ± 0.3 49.4 ± 0.3 54.6 ± 0.4 57.6 ± 0.1 59.3 ± 0.1 62.4 ± 0.2 65.8 ± 0.1

MoCov3 ViT-S/16 32.7 ± 0.6 42.0 ± 0.2 46.9 ± 0.3 49.6 ± 0.4 51.0 ± 0.1 53.8 ± 0.1 56.6 ± 0.2
✓ 33.9 ± 0.6 43.2 ± 0.2 48.4 ± 0.3 51.3 ± 0.3 52.8 ± 0.2 56.1 ± 0.1 59.8 ± 0.2

MSN

ViT-S/16 47.9 ± 0.1 56.2 ± 0.4 59.8 ± 0.3 61.6 ± 0.1 62.4 ± 0.2 64.4 ± 0.3 66.1 ± 0.1
✓ 47.8 ± 0.2 56.4 ± 0.4 60.5 ± 0.2 62.5 ± 0.2 63.6 ± 0.2 66.0 ± 0.2 68.4 ± 0.0

ViT-B/4 53.2 ± 0.2 64.5 ± 0.4 68.9 ± 0.2 70.9 ± 0.2 72.0 ± 0.3 73.8 ± 0.1 75.0 ± 0.2
✓ 54.0 ± 0.1 64.9 ± 0.5 69.4 ± 0.2 71.4 ± 0.1 72.7 ± 0.4 74.7 ± 0.0 76.4 ± 0.2

ViT-L/7 57.3 ± 0.4 66.5 ± 0.4 69.8 ± 0.5 71.6 ± 0.4 72.2 ± 0.2 73.8 ± 0.1 75.1 ± 0.1
✓ 57.7 ± 0.4 66.6 ± 0.5 70.1 ± 0.6 71.8 ± 0.4 72.6 ± 0.2 74.3 ± 0.1 76.0 ± 0.0

SimCLR ResNet50 21.4 ± 0.4 30.3 ± 0.1 36.1 ± 0.3 39.8 ± 0.2 42.0 ± 0.1 46.8 ± 0.1 51.9 ± 0.0
✓ 23.6 ± 0.4 33.4 ± 0.2 39.0 ± 0.4 42.0 ± 0.3 44.2 ± 0.1 48.0 ± 0.0 52.7 ± 0.0

BYOL ResNet50 26.5 ± 0.3 35.7 ± 0.2 41.5 ± 0.4 45.1 ± 0.2 47.2 ± 0.1 51.8 ± 0.1 57.1 ± 0.1
✓ 27.5 ± 0.3 37.5 ± 0.1 43.3 ± 0.4 46.8 ± 0.2 49.1 ± 0.1 53.2 ± 0.1 58.0 ± 0.1

CUB

DINO ViT-S/16 35.4 ± 1.2 49.0 ± 0.5 56.8 ± 0.8 60.8 ± 0.7 65.2 ± 0.9 70.6 ± 0.9 75.9 ± 0.3
✓ 36.2 ± 1.4 49.6 ± 0.6 57.4 ± 1.0 62.0 ± 0.6 66.4 ± 0.8 72.5 ± 0.8 79.0 ± 0.2

MoCov3 ViT-S/16 18.4± 0.6 27.2 ± 0.2 35.5 ± 1.0 40.0 ± 0.6 45.3 ± 0.9 54.1 ± 0.4 65.3 ± 0.3
✓ 19.2 ± 0.6 27.4 ± 0.3 35.6 ± 0.7 40.0 ± 0.3 45.4 ± 0.7 54.2 ± 0.6 65.8 ± 0.3

MSN

ViT-S/16 32.1 ± 1.6 45.0 ± 0.6 53.1 ± 0.6 56.7 ± 0.1 61.4 ± 0.5 67.3 ± 0.0 73.6 ± 0.4
✓ 33.0 ± 1.4 45.8 ± 0.7 53.2 ± 0.9 57.1 ± 0.4 62.0 ± 1.0 68.4 ± 0.1 75.7 ± 0.2

ViT-B/4 35.8 ± 1.6 50.0 ± 0.2 58.8 ± 1.0 61.2 ± 1.0 67.2 ± 0.2 73.0 ± 0.7 79.4 ± 0.2
✓ 38.1 ± 1.5 50.7 ± 0.2 59.1 ± 1.0 62.4 ± 1.6 67.5 ± 0.3 73.5 ± 0.3 80.2 ± 0.3

ViT-L/7 34.9 ± 1.3 49.4 ± 0.4 58.8 ± 0.8 62.7 ± 0.9 67.2 ± 0.3 73.8 ± 0.8 80.4 ± 0.2
✓ 37.5 ± 1.2 50.1 ± 0.5 59.0 ± 0.8 62.6 ± 0.5 67.5 ± 0.6 73.9 ± 0.4 81.0 ± 0.1

SimCLR ResNet50 7.8 ± 0.3 11.4 ± 0.4 15.3 ± 0.2 17.3 ± 0.4 19.5 ± 1.2 25.6 ± 0.3 35.9 ± 0.3
✓ 8.1 ± 0.3 11.3 ± 0.4 15.2 ± 0.2 17.8 ± 0.6 20.1 ± 1.1 25.7 ± 0.5 37.4 ± 0.8

BYOL ResNet50 14.9 ± 0.8 21.3 ± 0.6 28.4 ± 0.2 32.3 ± 0.2 34.8 ± 1.1 44.0 ± 0.1 55.1 ± 0.5
✓ 15.5 ± 0.8 21.1 ± 0.4 28.3 ± 0.4 32.9 ± 0.3 35.4 ± 1.1 44.5 ± 0.4 57.6 ± 0.7

Table 2. Average of top-1 accuracy (%) with standard deviation across 3 random subsets on ImageNet-1K and CUB.
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