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4. Acknowledgements

1. Additional results and videos

All videos and a large number of additional results are
available in our supplementary project page: https://
livesketch.github.io/.

These include an array of subjects animated with our
method, along with additional comparisons, ablation exper-
iments and visualizations of limitations. Please note that all
comparisons and ablation baseline results use our default
parameters, while the large video gallery includes results
with different parameter settings, chosen according to our
aesthetic preferences.

2. Analysis and ablation

In this section we present an array of experiments that ex-
plore the sensitivity of our method to different hyperpa-
rameters of the approach. These include technical changes
(such as learning rate adjustments), but also conceptual ex-
plorations such as the effect of sketch abstraction on the
generated videos.

2.1. Text prompt effect

Our animation process is guided by a user-provided text,
based on the prior of a pretrained text-to-video model. This
section further examines how the specified prompt affects
the animation. We first verify that the text itself influences
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Figure 1. Text prompt effect. We investigate the effects of using a
generic prompt (“The object is moving”) for all sketches, the effect
of using an empty prompt, or prepending and appending strings
that compel the diffusion model go generate sketches. Additional
video results are shown in the website.

the results in a meaningful way. To do so, we apply our
method to several example sketches, using two alternatives:
A “generic” prompt (“the object is moving”), and the empty
prompt (“”’). The results are shown in Fig. | and in the “Text
Prompt Effect” section of the website. Using the generic
prompt leads to irrelevant animations in which both the mo-
tion and the sketch appearance exhibit significant artifacts.
Using an empty prompt leads to results with no visible mo-
tion, and large shape deviations. We can thus conclude that
using prompts tailored for the input sketch is crucial, both
to preserve its characteristics and for the ability to generate
meaningful motion.

We further examine the impact of modifying the prompt
in a way that would motivate the text-to-video to create a
sketch. Specifically, we either prepend the string “A sketch
of” or append the string “Abstract sketch. Line drawing” to
the prompts.

In general, explicitly prompting for a sketch works com-
parably well to the original prompts. In some cases we ob-
serve slight differences in the extent of the motion or in the
adherence to slight details in the input sketch (e.g. the pen-
guin’s left fin is filled out when using the sketch prompts).
However, these can likely be accounted for with learning
rate tuning. We thus conclude that the model can reason-
ably infer the semantics of the object even when the prompt
does not directly convey its sketch-based nature.

Finally, we show additional results for applying different
prompts to the same input sketch (see “Varying the Prompt”
in the provided website). For example, observe how the
boxer changes his motion in accordance with the texts pro-
vided, demonstrating the actions of jumping, running, and
punching. Similarly, a cat can be made to change its pose,
or walk towards the camera. However, in some cases the
method is not sensitive enough to the changes in the pro-
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Figure 2. Different levels of abstraction. We show four selected
frames for each level of abstraction. The model can successfully
synthesize movement even for very abstract representations.

vided text prompt. This is particularly apparent when the
prompt requests large changes in the shape of the subject,
or when the diffusion model struggles to generate the de-
scribed motion even in it’s basic text-to-video setup. In the
video website, we demonstrate this on the ballerina sketch,
where the specifics of the prompts are largely ignored, lead-
ing to similar dancing motions. However, notice that sup-
plying the base diffusion model with those same prompts,
also creates videos with dancing that is unrelated to the mo-
tion described in the prompt. We hope that this limitation
could be overcome as better, more expressive text-to-video
models become available.

2.2. Different levels of abstraction

We also demonstrate the effect of altering the abstraction
level of the input sketches. We show results for three objects
with three levels of abstraction. The sketches were gener-
ated using 16, 8, and 4 strokes. An example is provided in
Fig. 2, and more examples and the full videos are provided
in the supplementary website’s “Abstraction Level” section.
As can be seen, even for the extreme case of very abstract
sketches with only four strokes, our method still manages
to produce animations that fit the given prompt. Yet, the ab-
stract animations may appear less smooth, leaving room for
future work to tackle such challenging cases.

2.3. Sketch representation

As described in the main paper, we represent a sketch as a
set of black cubic Bezier curves, and use CLIPasso [7] to au-
tomatically generate the sketches shown in the paper. How-
ever, our approach can be applied to alternative sketch rep-
resentations. As highlighted in the limitations section of the
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Figure 3. Human-drawn sketches. We applied our method to
sketches from the TU-Berlin dataset. With our default parame-
ters, these create reasonable motion but fail to preserve the exact
sketch appearance. By tuning the parameters for this input style,
shape preservation can be improved. See the website for exam-
ples.

main paper, employing different sketch representations may
require additional hyperparameter tuning. To illustrate the
impact of changing the sketch representation, we applied
our method to sketches from the TU-Berlin sketch dataset
[1], a human-drawn class-based sketch dataset. We show-
case the results of four representative sketches. Our method
was directly applied to the provided SVG files. Fig. 3 shows
a few representative frames from the videos produced for
two sketches. More results are shown in the supplemen-
tary website. As can be seen, our method successfully an-
imated the sketches, however their appearance is not fully
preserved when using the default hyperparameters. This can
be improved by using lower learning rates for the local path.

Next, we selected 100 random animal sketches from the
set and animated them using motion prompts generated with
ChatGPT. We evaluated the results with the core paper’s
quantitative metrics using our method and the leading com-
petitor (VideoCrafter). The results are provided in Tab. 1.
Here too our method outerfproms the competition by signif-
icant margins, showing that we can provide improvements
on multiple sketch styles.

Table 1. CLIP-based consistency and text-video alignment com-
parisons to VideoCrafter on our 100-animal subset of the TU-
Berlin sketch dataset [1]

Sketch-to-video Text-to-Video
consistency (1) alignment(1)

VideoCrafter 0.886 £ 0.008 0.118 £ 0.004
Ours 0.949 £+ 0.003 0.139 £ 0.003

Method

2.4. Learning rate scaling and tradeoffs

As discussed in the main paper, there exists a trade-off be-
tween the quality of generated motion and the capacity to
retain the appearance of the initial sketch. To illustrate
this trade-off, we conducted an experiment wherein we ran-
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Figure 4. Investigation of the tradeoff between motion quality and
sketch preservation. Increasing the local learning rates trades one
aspect for another.

domly selected three sketches from each class in our eval-
uation set (9 sketches in total). We then tested the impact
of scaling the local learning rate within the range of 0.01
to 0.0001, keeping all parameters constant except for the
local learning rate. Qualitative results are shown in the
website, under the “Trade-off” section. Observe that as we
move from the left (0.0001) to right (0.1), the motion in the
animations increases, better aligning with the text prompt.
However, this comes at the cost of preserving the original
sketch’s appearance. For example, observe how the fish and
the crab undergo complete transformations when using a
learning rate greater than 0.001. This trade-off introduces
additional control for the user, who may prioritize stronger
motion over sketch fidelity.

Furthermore, we assess the results using CLIP-based
metrics (Fig. 4). As can be observed, increasing the learn-
ing rate leads to a smooth tradeoff between motion qual-
ity and sketch preservation. Working with learning rates
€ [0.001,0.005] generally leads to a good compromise be-
tween the two aspects - though a user can choose a different
working point according to their preferences.

2.5. Hyperparameter effects

We demonstrate how changing different hyperparameters
in our method can provide the user with additional control
(see “Hyperparameter Effects” in the website). We observe
different effects across various sketches, which may be at-
tributed to the video model’s prior or the initial sketch qual-
ity. Specifically, in the third column (’+Ir local”’), we show-
case the impact of increasing the learning rate of the local
path. As evident, in some cases (biking and butterfly), this
improved the generated motion without significantly harm-
ing the sketch’s appearance. However, in other cases (cobra
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Figure 5. Hyperparameter effect. We show one representative
frame from each video (the full videos and additional examples
are provided in the website).

and boat), increasing the local path’s learning rate leads to a
complete alteration of the original sketch. In the fourth and
fifth columns we show the effect of increasing the transla-
tion and scale prediction weights. As observed, this indeed
causes the objects to move more across the frame or change
their scale.

2.6. Other text-to-video backbones

We investigate the performance of the model when we swap
one text-to-video prior for another. In the main paper, we
use ModelScope [8] as our text-to-video diffusion back-
bone. Here, we qualitatively evaluate the effect of replacing
it with other text-to-video models. In particular, we look at
a set of ZeroScope models, tuned across a range of resolu-
tions and framerates. The results are shown in the supple-
mentary videos (website section “Comparing Video Mod-
els”). Two representative examples are provided in Fig. 6.
Our method generalizes to these models with no additional
changes. However, note that different models do lead to dif-
ferent motion patterns, and some of them may result in dif-
ferent tradeoffs between the level of motion and the ability
to preserve the sketch. For example, observe the cat (sec-
ond row) which either wags their tail, raises its front legs, or
does both, depending on the model. For some models (e.g.
zeroscope v1-1 320s) the cat appears more deformed, and
a user may prefer to use another working point on the local
learning-rate axis in order to restore the shape.

3. Implementation and technical details

Here we outline additional details required to reproduce our
work and experiments. We will release all code and image
sets used for evaluations to facilitate further research and
comparisons.

3.1. Sketch generation

Unless otherwise noted, all sketches presented in the main
paper and the supplementary material were generated us-
ing CLIPasso [7]. CLIPasso is a method for automatically
generating object sketches represented with cubic Bezier
curves. In the majority of examples, we applied CLIPasso
with the default settings, using 16 strokes. The sketch’s can-
vas size is 256 x 256, and the strokes width is 1.5. It is im-
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Figure 6. Other text-to-video backbones. We show the first frame from the results of five alternative text-to-video models. The full videos
and additional examples are provided in the website. Observe that the choice of backbone model affects the output video in terms of both

the sketch’s appearance and the type of generated motion.

portant to note that our method can be employed with vec-
tor sketches created through alternative approaches, such as
[2—4, 6], or even sketched by hand. For optimal perfor-
mances, we recommend to represent the input sketch with
cubic Bezier curves.

3.2. Additional training details

To improve stability in early training steps, we initialize M
so that the predicted local displacements are small and the
global transformations 77 are close to the identity matrix.

When sampling timesteps for the SDS loss, we follow
DreamFusion [5] and avoid sampling very early or very late
steps. In practice we sample the steps uniformly in the range
[50, 950]. When rendering the video frames for training we
use a canvas size of 256 x 256, even when using text-to-
video models trained with different aspect ratios. This lim-
itation is primarily due to memory constraints. Lifting this
restriction may aid in improving visual fidelity at the cost of
higher VRAM requirements. We similarly restrict ourselves
to 24 frames. Increasing this value can improve smoothness
at the cost of additional memory. Our baseline method re-
quires roughly 23GB of VRAM.

3.3. Evaluation details
3.3.1 Baseline implementations

When comparing to alternative methods, we used the fol-

lowing implementations:

* ModelScope: https : / / huggingface . co /
spaces / damo — vilab / MS - Image2Video —
demo/tree/main

* ZeroScope: https : / / huggingface . co /
spaces / fffiloni / zeroscope — img — to —
video/tree/main

* VideoCrafter: https : / / huggingface . co /
spaces/VideoCrafter/VideoCrafter/tree/
main

* Animated Drawings: https :
metademolab.com/canvas

* Gen-2: https://research. runwayml .com/
gen2

/ / sketch .

Note that Gen-2 is actively updated. We obtained our
results on October 19th, 2023.

3.3.2 Evaluation metrics

For our sketch-to-video consistency metric we use Ope-
nAI’s CLIP ViT-B/32. For the text-to-video alignment met-
ric we use Microsoft’s xclip-large-patch14. This X-CLIP
model expects 8 input frames, which are sampled uniformly
from the generated video.

3.3.3 Evaluation data

In Tabs. 2 to 4 we provide the list of sketches used for our
quantitative evaluations, along with their associated prompt.

3.3.4 User Study

As discussed in section 5.2 of the main paper, we conduct a
user study to validate our suggested components. The user
study examines the sketch-to-video consistency and text-to-
video alignment of the animations produced when disabling
different components of our method. An example question
is shown in Fig. 7. These questions were repeated for all
the targets in the evaluation set, each time comparing our
full method to a random choice of the ablation scenarios.
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Below are two short animations of the input sketch shown on the left

The sketch is animated according to the prompt: "A ceiling fan rotating blades to circulate air in a
room."

Please choose the most suitable answer in the following two questions (if both options lock the
same 1o you, just pick a random one)

Input A B
A B

Which of the animations above
better fits the text prompt?

Which of the animations above

better preserves the appearance of
the input sketch?

Figure 7. User study example question.
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Table 2. Sketches, and prompts used for our quantitative evaluations for the “animal” class.

The penguin is shuffling along the ice terrain, taking deliberate and cautious step with its flippers
outstretched to maintain balance.

The goldenfish is gracefully moving through the water, its fins and tail fin gently propelling it
forward with effortless agility.

The crab scuttled sideways along the sandy beach, its pincers raised in a defensive stance.

A galloping horse.

The eagle soars majestically, with powerful wing beats and effortless glides.

A hummingbird hovers in mid-air and sucks nectar from a flower.

A dolphin swimming and leaping out of the water.

A butterfly fluttering its wings and flying gracefully.

A gazelle galloping and jumping to escape predators.

The squirrel uses its dexterous front paws to hold and manipulate nuts, displaying meticulous and
deliberate motions while eating.
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Table 3. Sketches, and prompts used for our quantitative evaluations for the "human” class.

The two dancers are passionately dancing the Cha-Cha, their bodies moving in sync with the infectious
Latin rhythm.

The boxer ducking and weaving to avoid his opponent’s punches, and to punch him back.

The runner runs with rhythmic leg strides and synchronized arm swing propelling them forward while
maintaining balance.

The jazz saxophonist performs on stage, his upper body sways subtly to the rhythm of the music.

The ballerina is dancing.

The biker is pedaling, each leg pumping up and down.

A martial artist executing precise and controlled movements in different forms of martial arts.

A surfer riding and maneuvering on waves on a surfboard.

A figure skater gliding, spinning, and performing jumps on ice skates.

A basketball player dribbling and passing while playing basketball.



Table 4. Sketches, and prompts used for our quantitative evaluations for the “object” class.

\ A waving flag fluttering and rippling in the wind.

//

A parachute descending slowly and gracefully after being deployed.

A wind-up toy car, moving forward or backward when wound up and released.

A ceiling fan rotating blades to circulate air in a room.
A clock hands ticking and rotating to indicate time on a clock face.

ﬁ/ A windmill spinning its blades in the wind to generate energy.

The wine in the wine glass sways from side to side.

The spaceship accelerates rapidly during takeoff, utilizing powerful rocket engines.

The flower is moving and growing, swaying gently from side to side.

% The airplane moves swiftly and steadily through the air.
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