
Supplementary Materials for paper: Weak-to-Strong 3D Detection with X-Ray
Distillation

In these supplementary materials we provide de-
tailed implementation insights: examples of both positive
and negative Temporal Object Fusion, visualizations of
NuScenes, Waymo and ONCE Object-Complete Frames,
and additional models comparisons to provide a compre-
hensive overview of the work.

The supplementary materials are organized in the follow-
ing way:

1. Section 1 demonstrates the performance improvements
by the Semi-Supervised X-Ray Teacher method over the
baseline model on the ONCE dataset, using the default
training parameters provided by [6]. This improvement
is notable not only with the refined training parameters
[2] utilized in main work but also when applying the de-
fault parameters that were commonly used in previous
research [7, 8].

2. Additional experiments and visualizations of the Object
Temporal Fusion block can be found in Section 2.

3. Section 3 shows detailed information on the Object-
Complete frames preprocessing and training details of
the Supervised X-Ray Teacher.

4. Section 4 presents a selection of randomly cho-
sen Object-Complete and original frames from the
NuScenes , Waymo, and ONCE datasets to provide a
comparative view of how these frames typically differ.

1. Additional Semi-Supervised Evaluation

In the main text, we adopted the training parameters from
our previous work [2] for training our model on the ONCE
dataset. This particular paper revealed that the training pa-
rameters previously used to achieve state-of-the-art (SOTA)
results were suboptimal during the pretraining stage, lead-
ing to an unfair comparison of semi-supervised methods.
Nevertheless, we also present results using the default pa-
rameters proposed in [3] to illustrate the robustness of
our methods under various conditions and to enable a di-
rect comparison of metrics with those reported in previous
SOTA works. Other than this, we do not modify our method
in any way.

2. Object Temporal Fusion
In this section, we provide a bit more detailed analysis
and comparison of various Point Cloud Registration (PCR)
methods utilized in the Object Temporal Fusion block. Ini-
tially, we replicated an experiment to compare different
registration methods using default training parameters: the
naive geometric approach, Greedy Grid [1], and GeDi [4],
as outlined in Table 2. The last method’s superior perfor-
mance is largely due to its ability to minimize noise effects
in the rotation and coordinates of boxes. For instance, the
SECOND model often produces noisy boxes on unlabeled
samples, leading to misaligned objects with basic alignment
methods. The comparative visualizations are shown in Fig-
ure 1. From these visualizations, it is evident that both the
geometric and GeDi methods encounter challenges in cer-
tain scenarios, such as with car C, while cars A and B ex-
hibit notably better alignment using the GeDi method. This
enhanced alignment is a result of advanced PCR process,
which effectively reduces noise from the 3D detector. How-
ever, since registration applies corrections sequentially, an
error in one iteration could lead to amplified errors in sub-
sequent ones. This is why GeDi fails with car C but suc-
ceeds in transforming cars A and B into well-aligned, nearly
complete objects, maintaining their original rotation. The
Greedy Grid method is omitted in this analysis as its per-
formance improvement is not on par with that of GeDi, and
it generally aligns with the geometric approach in terms of
overall quality.

3. Supervised Setting Implementation
This section discusses the specifics of Object-Completion
Sampling, a technique used to optimize the processing of
shape-complete objects, and provides insight into the train-
ing methodology for the Supervised X-Ray Teacher.

3.1. Object-Completion

Object-Completion is designed to utilize all available
frames within a scene to create the most comprehensive rep-
resentation of an object from every possible viewing angle.
However, in scenarios where scenes are extended and con-
tain numerous objects that remain within view over many
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Figure 1. Visual comparison between the geometric approach (box alignment) and the GeDi [4] Point Cloud Registration technique within
the Objects Temporal Fusion module. We evaluate their effectiveness in merging different views of an object into a unified point cloud.
Although both methods encounter difficulties with certain objects such as car C, the GeDi method generally provides superior alignment for
other vehicles, like cars A and B. This indicates that while the GeDi technique is more effective at aligning object points, it also highlights
the necessity for domain adaptation to prevent the errors, as observed with car C. The illustration underscores the potential of advanced
registration methods in enhancing object detection while also pointing to the need for further refinement to ensure consistent accuracy
across all objects.

frames, the size of the Object-Complete Frames can become
exceedingly large. Specifically, in the Waymo dataset [5], a
single frame might exceed 150MB, which can significantly
slow down the training process. Moreover, having an exces-
sive number of points for one scene can be unnecessary. To
address this, we employ a straightforward sampling strat-
egy for the Waymo dataset: we split the object-complete
cloud into two distinct parts — the original frame and all
newly added points. We then sample a volume 1.5 times
the size of the original cloud from the new points and con-
catenate these samples with the original points. As for the
NuScenes dataset, which typically generates much smaller
Object-Complete frames, we do not implement any sam-
pling strategy.

3.2. Training

Teacher. We train teacher networks from scratch: it never
saw any original point cloud, only Object-Complete ones.
We set default hyperparameters except for batch size - we
match total number of samples processed simultaneously,
so we make it equal 8. Knowledge Distillation. We train
students with the same configuration as if we were training
teacher or original model. There’s definitely a better config-
uration for our case and further researchers might also im-
prove our results by just adjusting some hyperparameters.

4. Visualization

In this section, we present a series of visual comparisons
that highlight the effectiveness of our Object-Complete
Frame Generation process. Figures 2, 3, and 4 illustrate
the pronounced differences between original frames and

Object-Complete frame Original frame

Figure 2. This figure provides a comparison of randomly se-
lected objects from the ONCE validation set, showing the differ-
ence between Object-Complete frames (left) and original frames
(right). The Object-Complete frame demonstrate the enhanced de-
tail achieved through our frame generation process, which collects
comprehensive point cloud data to construct a more complete rep-
resentation of each object. This enhanced representation helps re-
duce the ambiguity typically associated with sparse LiDAR data,
resulting in more accurate object detection.

those enhanced by Object-Complete Frame Generation, us-
ing examples from various real-world autonomous driving
datasets. These comparisons visually demonstrate the ad-
vantages of our method in terms of data richness and ob-
ject detection clarity. By significantly reducing sparsity
and occlusions, the generated Object-Complete frames of-
fer a more accurate and unambiguous representation of the
scene, as can be seen in the enhanced details of the objects.
These visualizations serve to illustrate the practical benefits
of our approach, reinforcing the validity of our contribu-
tions to the field of LiDAR-based 3D object detection.



Figure 3. Visual comparison between original (left) and Object-Complete (right) frames from the Waymo dataset. This figure shows how
Object-Complete Frame Generation enriches point cloud data. This enhancement significantly diminishes sparsity and occlusions, thereby
reducing ambiguity and making shape-complete objects easier to detect.
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Figure 4. Visual comparison between original (left) and Object-Complete (right) frames from the NuScenes dataset. This figure shows how
Object-Complete Frame Generation enriches point cloud data. This enhancement significantly diminishes sparsity and occlusions, thereby
reducing ambiguity and making shape-complete objects easier to detect.



Table 1. Comparison of the performance of X-Ray Teacher in
semi-supervised setting vs other methods using SECOND base-
line model with a default configuration. Models were trained on
different splits of unlabeled data (Small, Medium, Large) and eval-
uated on the ONCE validation split with Mean Average Precision
(mAP). The integration of X-Ray Teacher with the Mean Teacher
and Proficient Teacher methods is referred to as X-Ray MT and
X-Ray PT, respectively. Higher metric values indicate superior
model performance in 3D Object Detection. The best results are
highlighted in bold. Values in parentheses indicate the perfor-
mance difference between the original and X-Ray approaches. Our
approach consistently outperforms the state-of-the-art for Semi-
Supervised 3D Object Detection in terms of mAP across all splits.

Method SECOND
Train (5k labeled samples)

Pretraining 51.89
Small (100k unlabeled samples)

Pseudo Label 51.22 (-0.67)
Noisy Student 52.39 (+0.50)
Mean Teacher 55.34 (+3.45)
SESS 53.39 (+1.50)
3DIoUMatch 53.81 (+1.92)
NoiseDet 58.00 (+6.11)
Proficient Teacher 57.72 (+5.83)
X-Ray Teacher (ours) 59.65(+7.76)

Medium (500k unlabeled samples)
Pseudo Label 50.40 (-1.49)
Noisy Student 55.34 (+3.45)
Mean Teacher 58.27 (+6.38)
SESS 55.79 (+3.90)
3DIoUMatch 56.25 (+4.36)
NoiseDet 60.06 (+8.17)
Proficient Teacher 59.89 (+8.00)
X-Ray Teacher (ours) 62.42 (+10.53)

Large (1M unlabeled samples)
Pseudo Label 49.76 (-2.13)
Noisy Student 56.37 (+4.48)
Mean Teacher 59.28 (+7.39)
SESS 57.99 (+6.10)
3DIoUMatch 57.07 (+5.18)
NoiseDet 61.16 (+9.27)
Proficient Teacher 61.40 (+9.51)
X-Ray Teacher (ours) 63.57 (+11.68)
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Table 2. Comparison of different registration methods for Ob-
ject Complete Frame Generation. We used the default SECOND
model in the semi-supervised setting with X-Ray Teacher (our
modification of Mean Teacher without Exponential Moving Av-
erage) on three unlabeled splits ( Small, Medium, Large) pro-
cessed with three different registration methods and evaluated it on
the ONCE validation split with Mean Average Precision (mAP).
Higher metric values indicate superior model performance in 3D
Object Detection. The best results are highlighted in bold. Our
analysis shows that the choice of registration method has a no-
ticeable impact on the performance of X-Ray Teacher. The GeDi
registration method consistently outperforms the other techniques
across all data splits, achieving the highest mAP scores. This un-
derlines the importance of sophisticated registration techniques in
the generation of more accurate and complete point clouds.

Small
Method mAP
Box Geometry 59.04
Greedy Grid [1] 59.11
GeDi (our preprocessing)[4] 59.65

Medium
Box Geometry 62.03
Greedy Grid [1] 62.31
GeDi (our preprocessing) [4] 62.42

Large
Box Geometry 62.56
Greedy Grid [1] 62.81
GeDi (our preprocessing) [4] 63.57

supervised 3d object detection with proficient teachers. In
European Conference on Computer Vision, pages 727–743.
Springer, 2022. 1
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